Sur les systèmes de fermions à grand nombre de particules : un point de vue probabiliste
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 12, 12 p.

On cherche à démontrer le caractère globalement bien posé pour l’équation de Hartree, avec un potentiel d’interaction égal au delta de Dirac, c’est-à-dire

itγ=[-+ργ,γ]

γ est un opérateur intégral, [·,·] est le commutateur et ρ γ est la diagonale du noyau intégral de γ. On étudie cette équation autour de certains de ses états stationnaires. La difficulté principale vient du fait que les états stationnaires ne sont pas de classe trace alors que l’espace naturel pour la résolution de l’équation est l’espace des opérateurs positifs tels que Tr ((1-)γ)<. Pour s’affranchir de cette difficulté, on prend un point de vue probabiliste : on introduit une équation sur des processus aléatoires puis on traduit les résultats qu’on obtient pour cette équation en résultats pour l’équation de Hartree. Ce manuscrit résume partiellement [12].

We prove global well-posedness for the Hartree equation with an interaction potential equal to the Dirac delta, that is

itγ=[-+ργ,γ]

where γ is an integral operator, [·,·] is the commutator and ρ γ is the diagonal of the integral kernel of γ. We study this equation around some of its stationary states. The main difficulty comes from the fact that the stationary states are not trace class whereas the natural space to solve the equation is the space of positive operators such that Tr ((1-)γ)<. To solve this problem, we take a probabilistic point of view: we introduce an equation on random processes before translating results on this equation into results on the Hartree equation. This paper is a partial summary of [12].

Publié le :
DOI : 10.5802/slsedp.86
de Suzzoni, Anne-Sophie 1

1 Université Paris 13 Sorbonne Paris Cité LAGA, CNRS ( UMR 7539) 99, avenue Jean-Baptiste Clément F-93430 Villetaneuse France
@article{SLSEDP_2015-2016____A12_0,
     author = {de Suzzoni, Anne-Sophie},
     title = {Sur les syst\`emes de fermions \`a grand nombre de particules~: un~point de vue probabiliste},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:12},
     pages = {1--12},
     publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique},
     year = {2015-2016},
     doi = {10.5802/slsedp.86},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/slsedp.86/}
}
TY  - JOUR
AU  - de Suzzoni, Anne-Sophie
TI  - Sur les systèmes de fermions à grand nombre de particules : un point de vue probabiliste
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:12
PY  - 2015-2016
SP  - 1
EP  - 12
PB  - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.86/
DO  - 10.5802/slsedp.86
LA  - fr
ID  - SLSEDP_2015-2016____A12_0
ER  - 
%0 Journal Article
%A de Suzzoni, Anne-Sophie
%T Sur les systèmes de fermions à grand nombre de particules : un point de vue probabiliste
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:12
%D 2015-2016
%P 1-12
%I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.86/
%R 10.5802/slsedp.86
%G fr
%F SLSEDP_2015-2016____A12_0
de Suzzoni, Anne-Sophie. Sur les systèmes de fermions à grand nombre de particules : un point de vue probabiliste. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 12, 12 p. doi : 10.5802/slsedp.86. http://www.numdam.org/articles/10.5802/slsedp.86/

[1] C. Bardos, L. Erdős, F. Golse, N. Mauser, and Horng-Tzer Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 515–520.

[2] C. Bardos, F. Golse, Alex D. Gottlieb, and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683.

[3] N. Benedikter, M. Porta, and B. Schlein, Mean-field evolution of fermionic systems, Communications in Mathematical Physics 331 (2014), no. 3, 1087–1131 (English).

[4] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156.

[5] A. Bove, G. Da Prato, and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction, Comm. Math. Phys. 37 (1974), 183–191.

[6] A. Bove, G. Da Prato, and G. Fano, On the Hartree-Fock time-dependent problem, Comm. Math. Phys. 49 (1976), no. 1, 25–33.

[7] N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, vol. 126, 2004, pp. 569–605.

[8] N. Burq, P. Gérard, and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), no. 1, 187–223.

[9] N. Burq, P. Gérard, and N. Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 255–301.

[10] J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Comm. Math. Phys. 46 (1976), no. 2, 99–104.

[11] T. Chen, Y. Hong and N. Pavlović, Global well-posedness of the NLS system for infinitely many fermions, (2015). | arXiv

[12] A.-S. de Suzzoni, An equation on random variables and systems of fermions, (2015). | arXiv

[13] A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau, Nonlinear Hartree equation as the mean field limit of weakly coupled fermions, J. Math. Pures Appl. (9) 83 (2004), no. 10, 1241–1273.

[14] R. L. Frank, M. Lewin, E. H. Lieb, and Robert Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc. (JEMS), 16 (2014), no. 7, 1507–1526.

[15] R. L. Frank, M. Lewin, E. H. Lieb, and Robert Seiringer, A positive density analogue of the Lieb-Thirring inequality, Duke Math. J.,162, (2013), no. 3, 435–495.

[16] J. Fröhlich and A. Knowles, A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, J. Stat. Phys. 145 (2011), no. 1, 23–50.

[17] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles, I : Well-posedness theory, Comm. Math. Phys. 334 (2015), no. 1, 117–170.

[18] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles, II : Dispersion and scattering in 2D, Anal. PDE 7 (2014), no. 6, 1339–1363.

[19] B. Simon, The P(φ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974, Princeton Series in Physics.

[20] S. Zagatti, The Cauchy problem for Hartree-Fock time-dependent equations, Ann. Inst. H. Poincaré Phys. Théor. 56 (1992), no. 4, 357–374.

Cité par Sources :