Quantitative parabolic regularity à la De Giorgi
Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 6, 21 p.

We deal with the De Giorgi Hölder regularity theory for parabolic equations with rough coefficients. We give a quantitative proof of the interior Hölder regularity of solutions of parabolic equations using De Giorgi method. More precisely, we give a quantitative proof of the last non quantitative step of the method for parabolic equations, namely the intermediate value lemma, one of the two main tools of the De Giorgi method sometimes called “second lemma of De Giorgi”.

Publié le :
DOI : 10.5802/slsedp.129
Guerand, Jessica 1

1 DPMMS, University of Cambridge United Kingdom
@article{SLSEDP_2018-2019____A6_0,
     author = {Guerand, Jessica},
     title = {Quantitative parabolic regularity \`a la {De~Giorgi}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:6},
     pages = {1--21},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2018-2019},
     doi = {10.5802/slsedp.129},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.129/}
}
TY  - JOUR
AU  - Guerand, Jessica
TI  - Quantitative parabolic regularity à la De Giorgi
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:6
PY  - 2018-2019
SP  - 1
EP  - 21
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.129/
DO  - 10.5802/slsedp.129
LA  - en
ID  - SLSEDP_2018-2019____A6_0
ER  - 
%0 Journal Article
%A Guerand, Jessica
%T Quantitative parabolic regularity à la De Giorgi
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:6
%D 2018-2019
%P 1-21
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.129/
%R 10.5802/slsedp.129
%G en
%F SLSEDP_2018-2019____A6_0
Guerand, Jessica. Quantitative parabolic regularity à la De Giorgi. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 6, 21 p. doi : 10.5802/slsedp.129. http://www.numdam.org/articles/10.5802/slsedp.129/

[1] Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc., 24(3):849–869, 2011. | DOI | MR | Zbl

[2] Luis Caffarelli, Fernando Soria, and Juan Luis Vázquez. Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS), 15(5):1701–1746, 2013. | DOI | MR | Zbl

[3] Luis A. Caffarelli and Alexis Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. (2), 171(3):1903–1930, 2010. | DOI | MR | Zbl

[4] Ennio De Giorgi. Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3:25–43, 1957. | Zbl

[5] Ennio De Giorgi. Selected papers. Springer-Verlag, Berlin, 2006. Edited by Luigi Ambrosio, Gianni Dal Maso, Marco Forti, Mario Miranda and Sergio Spagnolo.

[6] E. DiBenedetto. On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13(3):487–535, 1986. | Zbl

[7] E. DiBenedetto. Recent results on the Cauchy problem and initial traces for degenerate parabolic equations. In Problems involving change of type (Stuttgart, 1988), volume 359 of Lecture Notes in Phys., pages 175–190. Springer, Berlin, 1990. | DOI

[8] Emmanuele DiBenedetto, Ugo Gianazza, and Vincenzo Vespri. Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(2):385–422, 2010. | Zbl

[9] Emmanuele DiBenedetto, Ugo Gianazza, and Vincenzo Vespri. Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations. Manuscripta Math., 131(1-2):231–245, 2010. | DOI | Zbl

[10] Emmanuele DiBenedetto, Ugo Gianazza, and Vincenzo Vespri. Harnack’s inequality for degenerate and singular parabolic equations. Springer Monographs in Mathematics. Springer, New York, 2012. | DOI | MR | Zbl

[11] Jérôme Droniou and Cyril Imbert. Solutions de viscosité et solutions variationnelles pour EDP non-linéaires. Notes de Cours. Available at https://cyrilimbert.files.wordpress.com/2013/10/cours-m2.pdf.

[12] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, 2010. | DOI

[13] Matthieu Felsinger and Moritz Kassmann. Local regularity for parabolic nonlocal operators. Comm. Partial Differential Equations, 38(9):1539–1573, 2013. | DOI | MR | Zbl

[14] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order. Springer, 2015. | DOI | Zbl

[15] François Golse, Cyril Imbert, Clément Mouhot, and Alexis F. Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Vol. XIX, issue 1:PP. 253–295, 2019. | Zbl

[16] Lingling Hou and Pengcheng Niu. A Nash Type result for Divergence Parabolic Equation related to Hormander’s vector fields. 2017. | arXiv

[17] Cyril Imbert and Luis Silvestre. The weak Harnack inequality for the Boltzmann equation without cut-off. Journal of the European Mathematical Society, to appear, August 2017. | DOI | MR | Zbl

[18] Moritz Kassmann. A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differential Equations, 34(1):1–21, 2009. | DOI | MR | Zbl

[19] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. | DOI

[20] Olga A. Ladyzhenskaya and Nina N. Ural’tseva. A boundary-value problem for linear and quasi-linear parabolic equations. I, II, III. Iaz. Akad. Nauk SSSR Ser. Mat. 26 (1962), 5-52; ibid. 26 (1962), 753- 780; ibid., 27:161–240, 1962.

[21] Olga A. Ladyzhenskaya and Nina N. Ural’tseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London, 1968. | DOI

[22] Gary M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1996. | DOI | Zbl

[23] Jürgen Moser. A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., 13:457–468, 1960. | DOI | MR | Zbl

[24] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958. | DOI | MR | Zbl

[25] Alexis F. Vasseur. The De Giorgi method for elliptic and parabolic equations and some applications. Morningside Lect. Math., 4, Int. Press, Somerville, Part 4:195–222, 2016. | Zbl

Cité par Sources :