On asymptotic stability of nonlinear waves
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 18, 27 p.

We review some results on asymptotic stability of nonlinear waves for a few dispersive or wave models, like the nonlinear Schrödinger equation, the generalized Korteweg-de Vries equation, and the nonlinear wave and Klein-Gordon equations. Then, we focus on recent results of the authors concerning the asymptotic stability of the kink for the φ 4 equation under odd perturbations. We also present two results (one of which seems previously unknown) of non-existence of small breathers for some nonlinear Klein-Gordon equations.

Publié le :
DOI : https://doi.org/10.5802/slsedp.111
@article{SLSEDP_2016-2017____A18_0,
     author = {Kowalczyk, Micha{\l} and Martel, Yvan and Mu\~noz, Claudio},
     title = {On asymptotic stability of nonlinear waves},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:18},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.111},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.111/}
}
TY  - JOUR
AU  - Kowalczyk, Michał
AU  - Martel, Yvan
AU  - Muñoz, Claudio
TI  - On asymptotic stability of nonlinear waves
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:18
PY  - 2016-2017
DA  - 2016-2017///
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.111/
UR  - https://doi.org/10.5802/slsedp.111
DO  - 10.5802/slsedp.111
LA  - en
ID  - SLSEDP_2016-2017____A18_0
ER  - 
Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio. On asymptotic stability of nonlinear waves. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 18, 27 p. doi : 10.5802/slsedp.111. http://www.numdam.org/articles/10.5802/slsedp.111/

[1] M. Ablowitz, D. Klaup, A. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Appl. Math. 53 (1974), no. 4, 249–315. | Article | MR 450815 | Zbl 0408.35068

[2] M. A. Alejo and C. Muñoz, Nonlinear stability of MKdV breathers. Comm. Math. Phys. 324 (2013), no. 1, 233–262. | Article | MR 3116324 | Zbl 1280.35123

[3] M. A. Alejo and C. Muñoz, On the variational structure of breather solutions II: Periodic mKdV equation. Electron. J. Differential Equations 2017, Paper No. 56, 26 pp. | Zbl 1379.35271

[4] M. A. Alejo and C. Muñoz, Almost sharp nonlinear scattering in one-dimensional Born-Infeld equations arising in nonlinear Electrodynamics. To appear in PAMS. arXiv:1707.02595. | Article | MR 3767373 | Zbl 1384.37095

[5] T. Aubin, Équations différentielles non linéaires et problème de Tamabe concernant la courbure scalaire. J. Math. Pure Appl. (9), 55(3):269–296 (1976) | Zbl 0336.53033

[6] Y. Bahri, Asymptotic stability in energy space for dark solitons of the Landau-Lifshitz equation. Anal. PDE 9 (2016), no. 3, 645–697. | Article | MR 3518533 | Zbl 1342.35291

[7] D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential. Amer. J. Math. 133 (2011), no. 5, 1421–1468. | Article | MR 2843104 | Zbl 1237.35115

[8] M. Beceanu, A centre-stable manifold for the focussing cubic NLS in 1+3 . Comm. Math. Phys. 280 (2008), no.1, 145–205. | Article | MR 2391193 | Zbl 1148.35082

[9] M. Beceanu, A critical center-stable manifold for Schrödinger’s equation in three dimensions. Comm. Pure Appl. Math. 65 (2012), no. 4, 431–507. | Article | Zbl 1234.35240

[10] G. N. Benes, A. Hoffman and C. E. Wayne, Asymptotic stability of the Toda m-soliton. J. Math. Anal. Appl. 386 (2012), no. 1, 445–460. | Article | MR 2834897 | Zbl 1226.82006

[11] T.B. Benjamin, The stability of solitary waves. Proc. Roy. Soc. London A 328, (1972) 153–183. | Article | MR 338584

[12] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves nonlinear dispersion systems. Philos. Trans. Roy. Soc. London Ser. 272, (1972) 47–78. | Article | MR 427868 | Zbl 0229.35013

[13] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations] C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 489–492. | Zbl 0492.35010

[14] H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in N . Indiana Univ. Math. J. 30 (1981), no. 1, 141–157. | Article | Zbl 0522.35036

[15] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82: 313–345, 1983. | Article | MR 695535 | Zbl 0533.35029

[16] F. Béthuel, P. Gravejat and D. Smets, Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation. Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 6, 1327–1381. | MR 3429470 | Zbl 1353.35256

[17] P. Bizoń, T. Chmaj and N. Szpak, Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation. J. Math. Phys. 52 (2011), no. 10, 103703. | Article | MR 2894613 | Zbl 1272.35174

[18] J. L. Bona, On the stability theory of solitary waves. Proc. Roy. Soc. London A 349, (1975) 363–374. | Article | MR 386438 | Zbl 0328.76016

[19] J. L. Bona, P. E. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A 411 (1987), 395–412. | Article | MR 897729 | Zbl 0648.76005

[20] M. Borghese, R. Jenkins, K. T.-R. McLaughlin, Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation. Preprint arXiv:1604.07436. | Article | Zbl 1390.35020

[21] T. Buckmaster and H. Koch, The Korteweg-de Vries equation at H -1 regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 5, 1071–1098. | Article | MR 3400442 | Zbl 1331.35300

[22] V. Buslaev and G. Perelman, Scattering for the nonlinear Schrödinger equations: states close to a soliton. St. Petersburgh Math. J. 4 (1993), no. 6, 1111–1142.

[23] V. Buslaev and G. Perelman, On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations, 75–98, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995. | Article | Zbl 0841.35108

[24] V. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), no. 3, 419–475. | Article | Numdam | Zbl 1028.35139

[25] T. Cazenave, Semilinear Schrödinger equations. New York University, Courant Institute, New York, 2003. | Article | Zbl 1055.35003

[26] T.  Cazenave, and A. Haraux, An introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998 | Zbl 0926.35049

[27] T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, (1982) 549–561. | Article | Zbl 0513.35007

[28] S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for nls solitary waves. SIAM J. Math. Anal., 39(4):1070–1111, 2007/08. | Article | MR 2368894 | Zbl 1168.35041

[29] C. V. Coffman, Uniqueness of the ground state solution for Δu-u+u 3 =0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal. 46 (1972), 81–95. | Article | MR 333489 | Zbl 0249.35029

[30] A. Cohen, Existence and regularity for solutions of the Korteweg–de Vries equation. Arch. Rat. Mech. Anal. 71 (1979), 143–175. | Article | Zbl 0415.35069

[31] M. Coles and S. Gustafson, A degenerate edge bifurcation in the 1D linearized nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst. 36 (2016), no. 6, 2991–3009. | Article | Zbl 1335.35229

[32] V. Combet, Construction and characterization of solutions converging to solitons for supercritical gKdV equations. Differential Integral Equations 23 (2010), no. 5-6, 513–568. | Zbl 1240.35433

[33] V. Combet, Multi-soliton solutions for the supercritical gKdV equations. Comm. Partial Differential Equations 36 (2010), no. 3, 380–419. | Article | MR 2763331 | Zbl 1218.35206

[34] V. Combet, Multi-existence of multi-solitons for the super-critical nonlinear Schrödinger equation in one dimension. Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 1961–1993. | Article | Zbl 1284.35394

[35] A. Contreras and D. Pelinovsky, Stability of multi-solitons in the cubic NLS equation. J. Hyperbolic Differ. Equ. 11 (2014), no. 2, 329–353. | Article | MR 3214610 | Zbl 1298.35190

[36] O. Costin, M. Huang and W. Schlag, On the spectral properties of L ± in three dimensions. Nonlinearity 25 (2012), 125–164. | Article | Zbl 1232.35106

[37] R. Côte, On the soliton resolution for equivariant wave maps to the sphere. Comm. Pure Appl. Math. 68 (2015), no. 11, 1946–2004. | Article | MR 3403756 | Zbl 1343.35155

[38] R. Côte, C. Muñoz, D. Pilod and G. Simpson, Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons. Arch. Ration. Mech. Anal. 220 (2016), no. 2, 639–710. | Article | MR 3461359 | Zbl 1334.35276

[39] W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, 057106 (2006). | Article | MR 2259317 | Zbl 1185.76463

[40] S. Cuccagna, On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15 (2003), no. 8, 877–903. | Article | MR 2027616 | Zbl 1084.35089

[41] S. Cuccagna, A survey on asymptotic stability of ground states of nonlinear Schrödinger equations. Dispersive nonlinear problems in mathematical physics, 21–57, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. | Zbl 1130.35360

[42] S. Cuccagna, On asymptotic stability in 3D of kinks for the φ 4 model. Trans. Amer. Math. Soc. 360 (2008), no. 5, 2581–2614. | Article | MR 2373326 | Zbl 1138.35062

[43] S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Comm. Math. Phys. 305 (2011), no. 2, 279–331. | Article | Zbl 1222.35183

[44] S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation. Trans. Amer. Math. Soc. 366 (2014), no. 2827–2888. | Article | Zbl 1293.35289

[45] S. Cuccagna and R. Jenkins, On asymptotic stability of N-solitons of the Gross-Pitaevskii equation. Comm. Math. Phys. 343 (2016), no. 3, 921–969. | Article | Zbl 1342.35326

[46] S. Cuccagna and D. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation on the line. Applicable Analysis 93 (2014), no. 4, 791–822. | Article | MR 3180019 | Zbl 06297951

[47] S. Cuenda, N. R. Quintero and A. Sánchez, Sine-Gordon wobbles through Bäcklund transformations. Discrete and Continuous Dynamical Systems - Series S 4 (2011), 1047–1056. | Article | Zbl 1215.37047

[48] R. Côte and H. Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension. Comm. Pure Appl. Math. 66 (2013), no. 10, 1541–1581. | Article | MR 3084698 | Zbl 1295.35124

[49] T. Dauxois and M. Peyrard, Physics of solitons. Cambridge University Press, Cambridge, 2010. | Zbl 1204.35141

[50] P. Deift and E. Trubowitz, Inverse scattering on the line. Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251. | Article | MR 512420 | Zbl 0388.34005

[51] P. Deift, S. Venakides and X. Zhou, The collisionless shock region for the long-time behavior of solutions of the KdV equation. Comm. Pure Appl. Math. 47 (1994), no. 2, 199–206. | Article | MR 1263128 | Zbl 0797.35143

[52] J.-M. Delort, Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. 34(4) (2001) pp. 1–61. | Article | Numdam | Zbl 0990.35119

[53] J.-M. Delort, Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations. Annales de l’Institut Fourier, 66 (2016) 1451–1528. | Article | MR 3494176 | Zbl 1377.35200

[54] J.-M. Delort, Modified scattering for odd solutions of cubic nonlinear Schrödinger equations with potential in dimension one. 2016 <hal-01396705>

[55] J.-M. Delort, D. Fang and R. Xue, Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions. J. Funct. Anal. 211 (2004), no. 2, 288–323. | Article | MR 2056833 | Zbl 1061.35089

[56] J. Denzler, Nonpersistence of breather families for the perturbed sine Gordon equation. Comm. Math. Phys. 158 (1993), 397–430. | Article | MR 1249601 | Zbl 0802.35132

[57] T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. 2008, Art ID rpn002. | Article | Zbl 1159.35043

[58] T. Duyckaerts, C. E. Kenig and F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc. 13 (2011), 533–599. | Article | Zbl 1230.35067

[59] T. Duyckaerts, C. E. Kenig and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation : the non-radial case. J. Eur. Math. Soc. 14 (2012), 1389–1454. | Article | Zbl 1282.35088

[60] T. Duyckaerts, C. E. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation. Cambridge Journal of Mathematics 1 (2013), 75–144. | Article | MR 3272053 | Zbl 1308.35143

[61] T. Duyckaerts, C. E. Kenig and F. Merle, Solutions of the focusing nonradial critical wave equation with the compactness property. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 731–808. | Zbl 1348.35141

[62] T. Duyckaerts, H. Jia, C. E. Kenig and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation. To appear in Geom. Funct. Anal. arXiv:1601.01871. | Article | MR 3678502 | Zbl 1391.35276

[63] W. Eckhaus and P. Schuur. The emergence of solutions of the Korteweg–de Vries equation from arbitrary initial conditions. Math. Meth. Appl. Sci. 5, (1983) 97–116. | Article | MR 690898 | Zbl 0518.35074

[64] K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 583–622. | Article | MR 2152333 | Zbl 1083.35019

[65] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons. Translated from the 1986 Russian original by Alexey G. Reyman. Reprint of the 1987 English edition. Classics in Mathematics. Springer, Berlin, 2007. | Article

[66] E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A. C. Newell, ed., AMS, Providence, R.I., 1974, pp. 143–156. | Article

[67] R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in . Acta Math. 210 (2013), 261–318. | Article | MR 3070568 | Zbl 1307.35315

[68] C. S. Gardner, C. S. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1087. | Article | Zbl 1061.35520

[69] P. Gérard, E Lenzmann, O. Pocovnicu and P. Raphaël, A Two-Soliton with Transient Turbulent Regime for the Cubic Half-wave Equation on The Real Line. arXiv:1611.08482 | Article | MR 3747579 | Zbl 1397.35062

[70] P. Germain, F. Pusateri and F. Rousset, Asymptotic stability of solitons for mKdV. Adv. Math. 299 (2016), 272–330. | Article | MR 3519470 | Zbl 1348.35219

[71] F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions. Duke Math. J. 68 (1992), no. 1, 101–150. | Article | MR 1185820 | Zbl 0811.35122

[72] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, (1979) 209–243. | Article | MR 544879 | Zbl 0425.35020

[73] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32, (1979) 1-32. | Article | Zbl 0396.35028

[74] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three. Comm. Math. Phys. 251 (2004), no. 1, 157–178. | Article | Zbl 1086.81077

[75] P. Gravejat, and D. Smets, Asymptotic stability of the black soliton for the Gross-Pitaevskii equation. Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 305–353. | Article | MR 3384514 | Zbl 1326.35346

[76] M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional hamiltonian system. Comm. Pure Appl. Math. 41 (1988), 747–774. | Article | MR 1040143

[77] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I. J. Func. Anal. 74 (1987), 160–197. | Article | MR 901236 | Zbl 0656.35122

[78] S. Gustafson, K. Nakanishi, and T.-P. Tsai, Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schrödinger maps on 2 . Comm. Math. Phys. 300 (2010), 205–242. | Article | Zbl 1205.35294

[79] S. Gustafson, K. Nakanishi, and T.-P. Tsai, Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves. Int. Math. Res. Not. (2004), no. 66, 3559–3584. | Article | Zbl 1072.35167

[80] N. Hayashi and P. Naumkin, The initial value problem for the cubic nonlinear Klein-Gordon equation. Z. Angew. Math. Phys. 59 (2008) 1002–1028. | Article | MR 2457221 | Zbl 1190.35199

[81] N. Hayashi and P. Naumkin, Quadratic nonlinear Klein-Gordon equation in one dimension. J. Math. Phys. 53 (2012), no. 10, 103711, 36 pp. | Article | MR 3050628 | Zbl 1282.35347

[82] D. B. Henry, J. F. Perez, and W. F. Wreszinski, Stability theory for solitary-wave solutions of scalar field equations. Comm. Math. Phys. 85 (1982), no. 3, 351–361. | Article | MR 678151 | Zbl 0546.35062

[83] A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model. J. Dynam. Differential Equations 21 (2009), no. 2, 343–351. | Article | MR 2506667 | Zbl 1172.35066

[84] A. Hoffman and C. E. Wayne, A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit. Infinite dimensional dynamical systems, 185–192, Fields Inst. Commun., 64, Springer, New York, 2013. | Article | Zbl 1275.37035

[85] A. Hoffman and C. E. Wayne, Orbital stability of localized structures via Bäcklund transformations. Differential Integral Equations 26 (2013), no. 3-4, 303–320. | Zbl 1289.35225

[86] J. Jendrej, Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5. J. Funct. Anal. 272 (2017), no. 3, 866–917. | Article | MR 3579128 | Zbl 1361.35115

[87] J. Jendrej, Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. | Zbl 1404.35295

[88] S. Kamvissis, Focusing nonlinear Schrödinger equation with infinitely many solitons, J. Math. Phys. 36, (1995) 4175–4180. | Article | Zbl 0845.35117

[89] C. E. Kenig, A. Lawrie, B. Liu and W. Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes. Adv. Math. 285 (2015), 235–300. | Article | MR 3406501 | Zbl 1331.35076

[90] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201 (2008), no. 2, 147–212. | Article | MR 2461508 | Zbl 1183.35202

[91] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, (1993) 527–620. | Article | MR 1211741 | Zbl 0808.35128

[92] Y. S. Kivshar and B. Malomed, Dynamics of solitons in nearly integrable models. Review of Modern Physics, 61 (1989), 763–915. | Article

[93] S. Klainerman, Global existence for nonlinear wave equations. Comm. Pure Appl. Math. 33 (1980), 43–101. | Article | MR 544044 | Zbl 0405.35056

[94] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math. 38 (1985), 631–641. | Article | MR 803252 | Zbl 0597.35100

[95] H. Koch, J. L. Marzuola, Small data scattering and soliton stability in H ˙ -1/6 for the quartic KdV equation. Anal. PDE, 5 (2012), no. 1, 145–198. | Article | Zbl 1267.35184

[96] E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic Ginzburg-Landau equations. Arch. Ration. Mech. Anal. 202 (2011), no. 1, 213–245. | Article | MR 2835867 | Zbl 1256.35146

[97] E. Kopylova and A. I. Komech, On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation. Comm. Math. Phys. 302 (2011), no. 1, 225–252. | Article | MR 2770013 | Zbl 1209.35134

[98] M. Kowalczyk, Y. Martel and C. Muñoz, Kink dynamics in the φ 4 model: asymptotic stability for odd perturbations in the energy space. J. Amer. Math. Soc. 30 (2017), 769–798. | Article | MR 3630087 | Zbl 1387.35419

[99] M. Kowalczyk, Y. Martel and C. Muñoz, Nonexistence of small, odd breathers for a class of nonlinear wave equations. Lett Math Phys (2017) 107: 921. | Article | MR 3633030 | Zbl 1384.35109

[100] J. Krieger, K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the one-dimensional NLKG equation. Math. Z. 272 (2012), no. 1-2, 297–316. | Article | MR 2968226 | Zbl 1263.35002

[101] J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Amer. J. Math. 135 (2013), no. 4, 935–965. | Article | MR 3086065 | Zbl 1307.35170

[102] J. Krieger, K. Nakanishi and W. Schlag, Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2423–2450. | Article | MR 3007693 | Zbl 1272.35153

[103] J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. 19 (2006), no. 4, 815–920. | Article | Zbl 1281.35077

[104] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the H 1 ( 3 ) critical focusing semilinear wave equation. Duke Math. J. 147 (2009), no. 1, 1–53. | Article | MR 2494455 | Zbl 1170.35066

[105] M. D. Kruskal and H. Segur, Nonexistence of small-amplitude breather solutions in φ 4 theory. Phys. Rev. Lett. 58 (1987), no. 8, 747–750. | Article

[106] G. L. Lamb Jr., Element of soliton theory (John Wiley & Sons, New York 1980). | Article

[107] P. D. Lax, Integrals of nonlinear equation of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968), 467–490. | Article | MR 235310 | Zbl 0162.41103

[108] Y. Liu and J. Wei, Nondegeneracy of the Lump Solution to the KP-I Equation. Preprint arXiv:1703.09879.

[109] H. Lindblad and A. Soffer, A Remark on long range scattering for the nonlinear Klein-Gordon equation. J. Hyperbolic Differ. Equ. 2 (2005), no. 1, 77–89. | Article | MR 2134954 | Zbl 1080.35044

[110] H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation. Lett. Math. Phys. 73 (2005), no. 3, 249–258. | Article | MR 2188297 | Zbl 1106.35072

[111] H. Lindblad and A. Soffer, Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities. Preprint arXiv:1307.5882. | Article | MR 3403074 | Zbl 1328.35201

[112] J. H. Maddocks and R.L. Sachs, On the stability of KdV multi-solitons. Comm. Pure Appl. Math. 46, (1993) 867–901. | Article | MR 1220540 | Zbl 0795.35107

[113] N. Manton and P. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004. | Article | Zbl 1100.37044

[114] Y. Martel, Asymptotic N–soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations. Amer. J. Math. 127 (2005), no. 5, 1103–1140. | Article | MR 2170139 | Zbl 1090.35158

[115] Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg–de Vries equation. Geom. Funct. Anal. 11, (2001) 74–123. | Article | MR 1829643 | Zbl 0985.35071

[116] Y. Martel and F. Merle, A Liouville Ttheorem for the critical generalized Korteweg–de Vries equation. J. Math. Pures Appl. 79, (2000) 339–425. | Article | MR 1753061 | Zbl 0963.37058

[117] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157, (2001) 219–254. | Article | MR 1826966 | Zbl 0981.35073

[118] Y. Martel and F. Merle, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation. Ann. of Math. 155, (2002) 235–280. | Article | MR 1888800 | Zbl 1005.35081

[119] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55-80. | Article | MR 2109467 | Zbl 1064.35171

[120] Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, (2002) 347–373. | Article | Zbl 1017.35098

[121] Y. Martel, F. Merle, Tai-Peng Tsai, Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133 (2006), 405–466. | Article | Zbl 1099.35134

[122] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14 (2001), 555–578. | Zbl 0970.35128

[123] F. Merle and P. Raphaël, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. of Math. (2) 161 (2005), no. 1, 157–222. | Article | Zbl 1185.35263

[124] F. Merle and P. Raphaël, On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. math. 156, 565–672 (2004). | Article | Zbl 1067.35110

[125] F. Merle and P. Raphaël, Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation. Commun. Math. Phys. 253, 675–704 (2005). | Article | Zbl 1062.35137

[126] F. Merle, and L. Vega, L 2 stability of solitons for KdV equation. Int. Math. Res. Not. (2003) no. 13, 735–753. | Article | Zbl 1022.35061

[127] F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Comm. Math. Phys. 333 (2015), no. 3, 1529–1562. | Article | MR 3302641 | Zbl 1315.35134

[128] M. Ming, F. Rousset, N. Tzvetkov, Multi-solitons and related solutions for the water-waves system. SIAM J. Math. Anal. 47 (2015), no. 1, 897–954. | Article | MR 3315224 | Zbl 1320.35284

[129] R. M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. | Article | Zbl 0333.35021

[130] T. Mizumachi, Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations. SIAM J. Math. Anal. 32, (2001) 1050–1080. | Article | MR 1828318 | Zbl 0981.35066

[131] T. Mizumachi, Asymptotic stability of solitary wave solutions to the regularized long-wave equation. J. Differential Equations 200 (2004), no. 2, 312–341. | Article | MR 2052617 | Zbl 1053.35119

[132] T. Mizumachi, Stability of line solitons for the KP-II equation in 2 . Mem. Amer. Math. Soc. 238 (2015), no. 1125. | Article | MR 3400767 | Zbl 1329.35056

[133] T. Mizumachi, Stability of line solitons for the KP-II equation in 2 , II. To appear in Proceedings of the Royal Soc. Edin. A. | Zbl 1391.35047

[134] T. Mizumachi, and R. L. Pego, Asymptotic stability of Toda lattice solitons. Nonlinearity 21 (2008), no. 9, 2099–2111. | Article | MR 2430663 | Zbl 1157.37020

[135] C. Muñoz, F. Poblete, and J. C. Pozo, Scattering in the energy space for Boussinesq equations. arXiv:1707.02616. | Article | MR 3825937 | Zbl 1398.35203

[136] K. Nakanishi and W. Schlag, Invariant manifolds and dispersive Hamiltonian evolution equations. Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2011. | Article | Zbl 1235.37002

[137] V. J. Novoksenov, Asymptotic behavior as t of the solution to the Cauchy problem for a nonlinera Schrödinger equation. Dokl. Akad. Nauk SSSR 251 (1980), 799–802.

[138] A. F. Nikiforov and V. B. Uvarov, Special functions of mathematical physics. Birkhäuser Verlag, Basel, 1988, A unified introduction with applications, Translated from the Russian and with a preface by Ralph P. Boas, With a foreword by A. A. Samarskiĭ. | Article | Zbl 0624.33001

[139] T. Ogawa and Y. Tsutsumi, Blow-up of H 1 solutions for the one-dimensional nonlinear Schrödinger equations with critical power nonlinearity. Proc. Amer. Math. Soc. 111 (1991), 487–496. | Article | Zbl 0747.35004

[140] R. L. Pego and S.-M. Sun, Asymptotic linear stability of solitary water waves. Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1161–1216. | Article | MR 3544325 | Zbl 1362.35240

[141] R. L. Pego and S.-M. Sun, On the transverse linear instability of solitary water waves with large surface tension. Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 4, 733–752. | Article | MR 2079803 | Zbl 1056.76016

[142] R. L. Pego and M I. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47–94. | Article | MR 1177566 | Zbl 0776.35065

[143] R. L. Pego and M I. Weinstein, Asymptotic stability of solitary waves. Comm. Math. Phys. 164, (1994) 305–349. | Article | MR 1289328 | Zbl 0805.35117

[144] I. Rodnianski, W. Schlag, and A. Soffer, Dispersive analysis of charge transfer models. Comm. Pure Appl. Math. 58 (2005), no. 2, 149–216. | Article | MR 2094850 | Zbl 1130.81053

[145] I. Rodnianski, W. Schlag, and A. Soffer, Asymptotic stability of N-soliton states of NLS. Preprint arXiv:math/0309114.

[146] F. Rousset, N. Tzvetkov, Transverse nonlinear instability of solitary waves for some Hamiltonian PDE’s. J. Math. Pures Appl. (9) 90 (2008), no. 6, 550–590. | Article | MR 2472893 | Zbl 1159.35063

[147] F. Rousset, N. Tzvetkov, Transverse instability of the line solitary water-waves. Invent. Math. 184 (2011), no. 2, 257–388. | Article | MR 2793858 | Zbl 1225.35024

[148] W. Schlag, Spectral theory and nonlinear partial differential equations: a survey. Discrete Contin. Dyn. Syst. 15 (2006), no. 3, 703–723. | Article | MR 2220744 | Zbl 1121.35121

[149] W. Schlag, Dispersive estimates for Schrödinger operators: A survey. Mathematical aspects of nonlinear dispersive equations, 255–285, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007. | Zbl 1143.35001

[150] W. Schlag, Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. of Math. (2) 169 (2009), no. 1, 139–227. | Article | Zbl 1180.35490

[151] P. C. Schuur, Asymptotic analysis of solitons problems. Lecture Notes in Math. 1232 (1986), Springer-Verlag, Berlin. | Article | Zbl 0643.35003

[152] H. Segur, Wobbling kinks in ϕ 4 and sine-Gordon theory. J. Math. Phys. 24 (1983), no. 6, 1439–1443. | Article | MR 708660

[153] H. Segur and M. Ablowitz, Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation I. J. Math. Phys. 17 (1976), 710–713. | Article

[154] J. Shatah, Normal forms and quadratic Klein-Gordon equations. Comm. Pure Appl. Math. 33 (1985) pp. 685–696. | Article | MR 803256 | Zbl 0597.35101

[155] I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions. Comm. Math. Phys. 153 (1993), no. 2, 297–320. | Article | Zbl 0780.35106

[156] A. Soffer and W. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133, 116–146 (1990). | Article | MR 1071238 | Zbl 0721.35082

[157] A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering ii. The Case of Anisotropic Potentials and Data. J. Diff. Eq. 98, 376–390 (1992). | Article | MR 1170476 | Zbl 0795.35073

[158] A. Soffer and M. I. Weinstein, Time dependent resonance theory. Geom. Funct. Anal. 8 (1998), no. 6, 1086–1128. | Article | MR 1664792 | Zbl 0917.35023

[159] A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136 (1999), no. 1, 9–74. | Article | Zbl 0910.35107

[160] J. Sterbenz, Dispersive Decay for the 1D Klein-Gordon Equation with Variable Coefficient Nonlinearities. Trans. Amer. Math. Soc. 368 (2016), no. 3, 2081–2113. | Article | MR 3449234 | Zbl 1339.35191

[161] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4), 110:353–372 (1976). | Article | MR 463908 | Zbl 0353.46018

[162] T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. | Article | MR 2286393 | Zbl 1171.35107

[163] T. Tao, Why are solitons stable? Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 1, 1–33. | Article | MR 2457070 | Zbl 1155.35082

[164] E. C. Titchmarsh, Eigenfunction Expansions Associated With Second-order Differential Equations, Oxford University Press, 1946. | Article | Zbl 0061.13505

[165] T.-P. Tsai, and H.T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions. Comm. Pure Appl. Math. 55 (2002), no. 2, 153–216. | Article | Zbl 1031.35137

[166] T. Vachaspati, Kinks and domain walls, Cambridge University Press, New York, 2006, An introduction to classical and quantum solitons. | Article | Zbl 1126.35001

[167] A. H. Vartanian, Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua. Math. Phys. Anal. Geom, 5 (2002), 319–413. | Zbl 1080.35060

[168] P.-A. Vuillermot, Nonexistence of spatially localized free vibrations for a class of nonlinear wave equations. Comment. Math. Helv. 62 (1987), no. 4, 573–586. | Article | MR 920058 | Zbl 0656.35093

[169] M. Wadati and M. Toda, The exact N–soliton solution of the Korteweg–de Vries equation. J. Phys. Soc. Japan 32, (1972) 1403–1411. | Article

[170] R. Weder, The W k,p -continuity of the Schrödinger wave operators on the line. Comm. Math. Phys. 208 (1999), no. 2, 507–520. | Article | Zbl 0945.34070

[171] R. Weder, L p -L p ˙ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170 (2000), no. 1, 37–68. | Article | Zbl 0943.34070

[172] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., 87(4):567–576, 1982/83. | Article | Zbl 0527.35023

[173] M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, (1985) 472–491. | Article | Zbl 0583.35028

[174] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, (1986) 51–68. | Article | MR 820338 | Zbl 0594.35005

[175] E. Witten, From superconductors and four-manifolds to weak interactions. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 3, 361–391. | Article | MR 2318156 | Zbl 1148.81015

[176] N. J. Zabusky and M. D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states. Phys. Rev. Lett. 15 (1965), 240–243. | Article | Zbl 1201.35174

[177] N. J. Zakharov and M. D. Manakov, Asymptotic behavior of nonlinear wave systems integrated by the inverse scattering transform. Soviet Physics JETP 44 (1976), 106–112. | Article

[178] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34, (1972) 62–69.

Cité par Sources :