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On asymptotic stability of nonlinear waves∗

Micha l Kowalczyk†, Yvan Martel‡, Claudio Muñoz§

Abstract

We review some results on asymptotic stability of nonlinear waves for a few dispersive
or wave models, like the nonlinear Schrödinger equation, the generalized Korteweg-de
Vries equation, and the nonlinear wave and Klein-Gordon equations. Then, we focus
on recent results of the authors concerning the asymptotic stability of the kink for the
φ4 equation under odd perturbations. We also present two results (one of which seems
previously unknown) of non-existence of small breathers for some nonlinear Klein-Gordon
equations.

1 Introduction

In these notes, we review some results and techniques concerning the asymptotic stability of
solitary waves or kinks for a few typical dispersive equations, like the nonlinear Schrödinger
equation, the Korteweg-de Vries in generalized form, and for wave problems, like the nonlinear
wave equations, the nonlinear Klein-Gordon equations, the sine-Gordon and φ4 equations.

The literature on the subject is huge. We present only a few selected results on asymptotic
stability related to the authors’ interests. Because of possible oversimplifications or missing
references, we systematically refer to the original papers and to the references therein.

An intuition of what we mean by asymptotic stability for solitary waves or kinks may
be developed using the analogy with finite dimensional problems, but dealing with partial
differential equations not only highly complicates the analysis, but also forces us to adapt the
notion of convergence to each given situation.

Basically, one can identify two approaches to asymptotic stability.

(1) The first method is to use integrability techniques. When the equation at hand is
completely integrable and inverse scattering is available and effective, a global reduction
of the nonlinear problem to a linear problem is possible. One may obtain the generic
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behavior of any solution (at the cost of technical assumptions), typically, under the form
of the soliton resolution, see §2.1. In some sense, this gives much more information than
asymptotic stability in a neighbourhood of the waves. Note that such global results have
recently started to appear also for non-integrable models (see §8.2).

When the inverse scattering does not provide all the setting for such global results a
remnant of the integrability structure may give some important spectral information
on the linearized operator around solitary waves which can be useful in applying the
second approach (see §2.2, §2.3). In numerous situations the inverse scattering method
also provides us with explicit solutions giving valuable information, like for example
possible obstructions to general asymptotic stability results (see §2.2 and §9.1).

(2) The second approach is perturbative which means that one studies the flow only in
a neighbourhood of some family of solitary waves. This can be done either by using
suitable assumptions on the initial data and stability theory (in stable cases, see §3), or
by imposing a global in time assumption on the solution, or by working on a restricted
set of initial data (see §5), typically a manifold of finite co-dimension (center-stable
manifold). Then, one decomposes the solution into a wave, known up to a finite number
of geometrical parameters (mainly corresponding to the invariances of the equation
and satisfying a system of equations), plus a small residue. The asymptotic stability
problem then reduces to the understanding of the long time behavior of the small residue
and of the evolution of the parameters. Once the residue is controled, the behavior
of the parameters is generally not difficult to handle by standard ODE theory. On
the residue, ideally, one would like to obtain scattering, which means that the residue
behaves like the solution of a linear dispersive equation. In practice, it is not always true
(modified scattering is proved in some situations) or provable by current technology and
convergence to zero in large time in some weaker sense is already quite interesting. The
perturbative approach in principle applies to any model (no special structure is needed,
in contrast with the rigidity of integrability techniques), but the linearized PDE satisfied
by the residue (in general coupled with the equations of the geometrical parameters)
may be quite hard to study. Here, we identify two main strategies to handle the residue.

(2a) Dispersive estimates: the idea is essentially to extend the small data global Cauchy
theory to a linearized equation with potential. In general, this requires rather
strong spectral information on the corresponding Schrödinger operator, rarely fully
proved (see §5). This method has the advantage to provide detailed information
on the behavior of the residue, but often requires high power nonlinearities and/or
large space dimension. Some other assumptions, like the Fermi golden rule may
be needed (see §5 and §9).

(2b) Liapunov functionals: virial type arguments can provide convergence to zero in
a weaker sense, under different and in some sense weaker spectral information
(sometimes still difficult to prove analytically). This method is especially useful in
low dimensional problems with low power nonlinearities, since dispersive estimates,
even for the free flow, are not needed (see §6, §7, §8, §9).

Generally speaking, it seems that proving asymptotic stability for nonlinear waves is a case-by-
case problem, escaping any kind of universal criterium or approach, as developed for example
for the stability theory of ground states (see §3).
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2 Some results from inverse scattering

2.1 The KdV equation

The Korteweg-de Vries equation

∂tu+ ∂x(∂2
xu+ u2) = 0, (t, x) ∈ R× R, (1)

is a typical model where the inverse scattering method has been extremely successful. We
refer to the following books and papers [1, 49, 50, 63, 66, 68, 106, 107, 112, 129, 151, 169]
and to the references therein. In particular, for this equation, a satisfactory version of the
decomposition into solitons is available.

Here, we set Q(x) = 3
2 cosh−2(x/2) and for c > 0, Qc(x) = cQ(c1/2x). Since Qc is solution

of Q′′c +Q2
c = cQc, the function defined by qc(t, x) = Qc(x− ct− σ) (where σ ∈ R) is solution

of equation (1) (called a soliton).

Theorem 1 (Decomposition into solitons [63, 151]). Let u0 be a C4 function such that for
any j ∈ {0, . . . , 4}, for all x ∈ R,

∣∣(∂ju/∂xj)(0, x)
∣∣ . 〈x〉−10. Let u be the solution of (1) with

initial data u0. Then, there exist K ∈ N, σ1, . . . , σK and c1 > · · · > cK > 0 such that,

u(t, x)−
K∑

k=1

Qck
(x− ckt− σk)→ 0 as t→ +∞, for all x > 0.

The inverse scattering method used to treat integrable problems decouples the localized
part (solitary waves) and the dispersive part. It requires some regularity and decay on the
solutions. From [30], the assumptions on the initial data in the above result are sufficient to
apply the results in [63, 151], but they are certainly not optimal. It is not clear from the
literature what are the optimal conditions. Note also that the asymptotic behavior of the
solution is described only for x > 0 (see results in [151] for slight improvement). The question
of the exact asymptotic behavior of the residue for x < 0 is delicate; see e.g. [51, 63, 151] and
references therein.

Recall that the inverse scattering method also provides exceptional solutions (called multi-
solitons) for which the residue strongly converges to zero for all x ∈ R, and describing for all
time the elastic collisions of any number of solitons; see e.g. [169, 114, 120, 129] (by elastic
we mean that the interacting solitons recover their exact sizes and speeds after a collision).
Recall also that [71] proves the existence of solutions with an infinite number of solutions.

The modified Korteweg-de Vries equation, i.e., ∂tu+∂x(∂2
xu±u3) = 0 is also a completely

integrable model, related to (1) by the Miura transform. We refer to [129, 151]. For related
results based on PDE techniques for these integrable models, see for example [21, 70, 126].

2.2 The cubic 1D NLS

Recall that the 1D cubic nonlinear Schrödinger equation

i∂tu+ ∂2
xu+ |u|2u = 0, (t, x) ∈ R× R, (2)

is also an integrable equation, widely studied as such. See e.g. [35, 46, 49, 50, 65, 88, 137,
176, 167, 177, 178]. Here, we only reproduce the recent asymptotic stability result from [46].

Let Q(x) =
√

2 cosh−1(x) denote the unique (up to translation) positive solution of the
equation Q′′ +Q3 = Q, and let Qc(x) = c1/2Q(c1/2x) for c > 0.

Exp. no XVIII— On asymptotic stability of nonlinear waves
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Theorem 2 (Asymptotic stability for 1D cubic NLS, [46]). Let s > 1. There exists δ > 0
such that for any u0 ∈ L2 with 〈x〉su0 ∈ L2 and ‖〈x〉s(u0 −Q)‖L2 ≤ δ, the solution u of (2)
with initial data u0 satisfies, for t� 1,

‖u(t)− eiΓ(t,·)Qc+(· − σ(t))‖L∞ . t−1/2,

for some c+ close to 1, some translation and phase parameters σ and Γ.

The proof of this result relies on integrability techniques (see references to works by Deift-
Park and Deift-Zhou in [46]), and it is especially striking. Indeed, in strong contrast with
KdV, there is an explicit obstruction to asymptotic stability for (2), which is the existence
of two-solitons (solutions behaving like the sum of two solitons in some sense, see [178]) for
which the solitons have parallel trajectories and arbitrary different sizes. In particular, there
are two-solitons of (2) containing a soliton of size 1 and a parallel arbitrarily small soliton,
for all time (such solutions are certainly unstable by nature). Since small solitons are small
in H1, these solutions are explicit obstructions to asymptotic stability in the energy space for
single solitons. However, small solitons are not small in the norm of L2(〈x〉sdx), for s ≥ 1.

Concerning the soliton decomposition for (2), we refer to the recent work [20].

2.3 The 2D KP-II equation

Recall that the integrable Kadomtsev-Petviashvili-II equation

∂x(∂tu+ ∂x(∂2
xu+ u2)) + ∂2

yu = 0, (t, x) ∈ R× R2, (3)

is a 2D extension of the classical KdV equation which does not admit localized solitons.
However, the solitons qc(t, x) = Qc(x − ct − σ) of KdV, defined above (Q′′c + Q2

c = cQc)
provide traveling waves solutions of KP-II independent of y, called line-solitons. It is a
classical question to study the stability and asymptotic stability of these line-solitons with
respect to localized (or periodic) perturbations. The problem was recently settled in [132, 133].
For a > 0, define the weighted norm ‖ · ‖La by

‖f‖2La
= ‖eaxf‖2L2

xy
+ ‖eaxf‖2L1

yL
2
x

+ ‖f‖2L2
xy
.

Theorem 3 (Asymptotic stability of line-solitons for KP-II, [132]). For a > 0 small, there
exists δ > 0 such that if u0 satisfies ‖u0 − Q‖La ≤ δ, then the solution u of (3) with initial
data u0 satisfies, for all t� 1,

∥∥eax
(
u(t, x+ σ(t, y), y)−Qc(t,y)(x)

)∥∥
L2

xy
. |t|−3/4,

where supy |c(t, y)− 1|+ |∂yσ(t, y)| . |t|−1/2.

Note that the argument in [132] uses a combinaison of algebraic properties coming from
integrability theory (linearized Miura transformation) and of refined PDE tools. The use
of exponentially weighted spaces in this context is also related to [143]. Interestingly, it is
necessary to consider parameters σ and c depending on t and y. We refer to [132] for more
precise statements. Note that the scaling parameter c(t, y) converges to 1; indeed, a localized
perturbation cannot provoke a change in the scaling of the infinite energy line-soliton. Another
recent result [133] weakens the assumption on the initial data.

For the integrable KP-I equation (the term ∂2
yu in (3) has the opposite sign), we refer to

the result of instability of line-solitons by transverse perturbations proved earlier in [146].
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2.4 Other models

Numerous other integrable models, like the Toda Lattice [10, 134], have been considered. The
case of the sine-Gordon equation is briefly discussed in §9.1. We also mention recent progress
on the stability of breathers for the integrable case in [2, 3], related to techniques used for
KdV multi-solitons in [112].

For nearly integrable models, we refer to the review paper [92]. For models close to
integrable KdV, we also refer to [83, 84, 85] on the FPU model and to [39, 140, 141, 147]
on the water-wave problem. See [69] and references therein on the Szëgo and half wave
equations. Finally, [4] and [135] describe other applications of the Virial technique to fluids
and quasilinear wave equations.

3 Solitary waves

3.1 Existence and uniqueness results

In the 80s, the important development of the elliptic theory provided many results on the
existence, uniqueness and further properties of (mainly radial) solutions of nonlinear elliptic
equations on Rd, notably equations of the form

∆u+ f(u) = cu, x ∈ R,

for c > 0 and for general nonlinearities, typically f(u) = |u|p−1u, for p > 1. From variational
methods, or relatively soft spectral methods, stability issues where reduced to simple criteria.
We refer to [11, 12, 13, 14, 15, 18, 19, 25, 27, 28, 29, 72, 76, 77]. In one dimension or in any
dimension in the radial case the ground state solutions are well-understood.

In these notes, we do not discuss the question of local or global well-posedness of the
Cauchy problem for the various nonlinear PDE considered. We mostly consider energy so-
lutions and we refer to [25, 26, 73, 91] for the nonlinear Schrödinger equation, the gKdV
equations and the wave equation. For the critical wave equation, we refer to the references
given in [90]. We usually denote by u0 the initial data of a solution u(t) at t = 0.

3.2 Stability result for sub-critical gKdV

Consider the generalized KdV equations with pure power nonlinearity

ut + (uxx + up)x = 0, (t, x) ∈ R× R. (4)

For p > 1, extending the previous formulas, we define Q to be the unique positive solution
(up to translation) of Q′′ + Qp = Q in H1. For c > 0, let Qc(x) = c1/(p−1)Q(c1/2x). It has
been proved by variational arguments and the conservation of mass and energy

M(u) =

∫
u2, E(u) =

∫ (
1

2
u2
x −

1

p+ 1
up+1

)

that the solitons are (orbitally) stable in H1 in the following sense.

Theorem 4 (Stability of the soliton for sub-critical gKdV [11, 18, 27, 174]). Let 1 < p < 5.
For all ε > 0, there exists δ > 0, such that if ‖u0 − Q‖H1 ≤ δ, then the solution u of (4)
with initial data u0 satisfies, for all t ∈ R, ‖u(t, . + σ(t)) − Q‖H1 ≤ ε for some translation
parameter σ.

Exp. no XVIII— On asymptotic stability of nonlinear waves
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Remark 1. By time reversibility, it follows from the stability statement that if an H1 solution
u(t) of (4) satisfies limt→+∞ ‖u(t, ·+ σ(t))−Q‖H1 = 0, for some translation parameter σ(t),
then, for all time t ∈ R, u(t, x) = Q(x− t− σ0), for some σ0, i.e. the solution u is a soliton.

Note that the translation parameter satisfies from the proof |σ′(t)− 1| . ε, but we cannot
expect |σ(t)− t| to be uniformly controled (take as u a soliton Qc(x− ct) where c ∼ 1, c 6= 1).

For the 1D sub-critical nonlinear Schrödinger equation, taking into account additional
symmetries of this equation, a completely analogous result exists. In higher dimension, the
same result was proved in sub-critical cases, for the ground states solitary waves, see [25, 174].

3.3 Instability

For critical and super-critical nonlinearity p ≥ 5, the solitons are unstable by the gKdV flow.
The instability phenomenon is quite different in the critical case (linear stability holds and
the nonlinear instability is related to the scaling parameter) and in the super-critical case
(linear exponential instability). Similar results exist for NLS. See [19, 25, 77, 115, 142, 173].

3.4 Recent developments and perspectives

There are still many open problems on existence, uniqueness, non-degeneracy and orbital
stability of waves, mainly on truly nonradial situations and for excited states. Recent results
have been obtained on several delicate cases: see the general result of uniqueness and non-
degeneracy of the soliton for Benjamin-Ono type equations obtained in [67], and [108] on the
non-degeneracy of the lump solution of the KP-I equation. The construction of non-radial
solutions is also a quite active field.

4 General issues for proving asymptotic stability

From the integrable cases discussed in §2 and the stability statement in §3, we can identify
the following issues when trying to prove asymptotic stability.

(i) Time reversibility. It is well-known that time reversibility of a model is a strong restric-
tion to obtain smoothing effects in the case where some persistence of regularity also
holds. A similar problem, illustrated in Remark 1 above, exists for asymptotic stability.
If stability holds in some topology, then asymptotic stability cannot be true in exactly
the same topology, since by reversing time, one would obtain the contradiction that any
solution close to a soliton is exactly a soliton. This means that the topology has to be
adapted to the problem, and that the irreversibility mechanism underlying a statement
of asymptotic stability has to be understood in some way.

(ii) Difficult spectral problems. Once the nonlinear model has been linearized around a non-
linear wave proving convergence to 0 for the residue is similar to proving scattering of
small solutions of nonlinear models (or some weaker statement), but as we had men-
tionned before, that problem in turn has a non-zero potential coming from linearization
around the nonlinear wave. This potential is usually not explicit (except in some specific
1D situations) and dispersive estimates for linear operators with general potential are
hard to prove as they require detailed spectral information on the corresponding linear
Schrödinger operator. Such estimates are known only in few situations and require a
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case-by-case study, sometimes accessible only by computer-assisted proofs (see §5). Two
common ways to handle the situation is to add a further potential to the equation (with
convenient assumptions) and consider waves close to ground states (see for example
Theorem 5), or to assume the desired properties on the potential (without much hope
to actually verify these assumptions).

(iii) Scattering to 0. In many nonlinear problems already the asymptotic stability of the
zero solution (no unknown potential appears in the equation) can be hard to prove,
especially for low power focusing nonlinearities in low dimensions. Some notion of
modified scattering may be needed, or some weaker notion of convergence to 0. Many
interesting physical situations correspond to quadratic or cubic nonlinearities. Working
in space dimensions higher than or equal to 3 make things easier from the point of view
of the dispersion, but problems in 1D and 2D are also quite important and numerous.

(iv) Instability directions. When considering large dimension or strong nonlinearity, the
solitary waves may become unstable, see §3.3. It may seem an important obstacle, but
actually, the strategy of replacing the general statement of asymptotic stability by the
construction of a finite co-dimensional manifold of initial data leading to asymptotic
stability has been especially successful recently, see §5.3. If the instability mechanism
is well-known, the problem is not much harder than the stable case, and only requires
a special treatment of the instability directions. In some critical cases, the instability
mechanism may become degenerate (no exponential instability) and related to the scal-
ing instability. It does not prevent from proving some sort of asymptotic stability, even
in focusing contexts, see §7 and §8.

A different but related problem in the instable case is the existence of a finite dimen-
sionnal stable manifold, see [32, 33, 34, 57, 76, 87, 142].

(v) Direct obstructions to asymptotic stability. The notion of asymptotic stability has to
take into account obvious obstructions from the symmetries of the flow, for example by
letting free some geometrical parameters. Other deeper obstructions may come from
arbitrarily small waves. It is not always the case that small solitons are geographically
decoupled from the large ones. A typical example are the multi-solitons for the 1D
cubic NLS, as explained in §2.2. There are several ways to get round such problems like
changing the topology (then small traveling waves becomes large, see §2.2) or removing
the small traveling waves of the model by perturbing the nonlinearity close to 0 (see §5
and Theorem 15). For the sine-Gordon model, the existence of small breathers implies
that the kink cannot be asymptotically stable. See §9.2.

(vi) Less obvious obstructions at the linear level. For some models, there are less obvious
obstructions, like the existence of internal modes. These internal modes are obstructions
at the linear level and may or may not correspond to real nonlinear obstructions. The
comprehension of such phenomenon seems to be widely open. See Section §9.5 for an
example of such difficulty at the linear level, handled at the nonlinear level by considering
quadratic terms and using a variant of the Fermi golden rule.

(vii) Choice of the functional space. As a consequence of (i), (iii) and (v), one has to choose
suitable norms or notion of asymptotic stability.

Exp. no XVIII— On asymptotic stability of nonlinear waves
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5 Spectral methods for NLS

In the context of the nonlinear Schrödinger equation, the first pioneering results are [22,
23, 156, 157]. These papers initiated the method of separating modes and using dispersive
estimates with potential (usually in weighted spaces), under assumptions on the spectrum of
the linearized operator.

5.1 NLS with potential

The presence of a well-behaved potential V in the equation facilitates the understanding of the
behavior of small solutions, since for such solutions, the potential of the linearized operator
is V at the main order. We present from [79] a typical result with potential. For a complete
list of references concerning such questions, we refer to the introduction of [79]. Consider the
following model

i∂tu+ ∆u− V u+ g(|u|2)u = 0, (t, x) ∈ R× R3. (5)

We assume that

(1) the potential V is real-valued and satisfies supR3〈x〉3+ε|V (x)| < +∞;

(2) the operator −∆+V has only one eigenvalue e0 < 0, associated to a normalized positive
eigenfunction φ0;

(3) the nonlinearity g satisfies |g(v)| . |v|2/3 for |v| < 1 and |g(v)| . |v|2 for |v| > 1.

Now, we consider the family of small nonlinear bound states Qz, parametrized by small z ∈ C,
and satisfying the linearization Qz − zφ0 = o(z) ⊥ φ0,

(−∆ + V )Qz + g(|Qz|2)Qz = λzQ, λz = e0 + o(z) ∈ R.

Theorem 5 (Scattering around solitons for NLS with potential, [79]). Assume (1), (2), (3).
Any solution u of (5) with initial data sufficiently small in H1 decomposes for all t ≥ 0, as

u(t) = eiΓ(t)Qz(t) + w(t),

for parameters Γ and z, with |z(t)| → m∞ ≥ 0 as t → +∞, |m∞ − |z(0)|| . ‖u(0)‖2H1, and
where the remainder w scatters in H1.

In [165], in the case of several bound states (and among them, a ground state), another
important question whether solutions initially close to excited bounds states will approach
the ground state in large time is studied.

In [22, 23, 24, 79] the nonlinearity is supposed to be flat enough at 0 so that dispersive es-
timates are enough to control nonlinear terms. In one dimension, this means at least a quintic
power near zero. A recent work of Delort [54] addresses the case of a Schrödinger equation
in one dimension with cubic power and variable coefficients. Under natural assumptions on
the potential and using oddness assumption, the asymptotic behavior of the solution in large
time is described, in particular, the solution is proved not to scatter. We also refer to the
discussion in the introduction of [54] for more references on modified scattering.

Michał Kowalczyk, Yvan Martel and Claudio Muñoz

XVIII–8



5.2 Stable NLS solitons without potential

The problem of the asymptotic stability of stable solitary waves for the nonlinear Schrödinger
equations has been extensively studied, see e.g. [22, 23, 24, 40, 41, 43, 44, 46, 74, 144, 145,
148, 149, 150, 151] and references therein. (In this list, we especially highlight [24, 44, 144]
as typical works.) See also the related works [45, 78]. The situation is hard to summarize
since all these works (except in the integrable case [46], presented in §2.2) are subject to
specific assumptions, like spectral assumptions or suitable dispersive estimates for equations
with unknown potential, a suitable Fermi Golden Rule, specific flatness conditions on the
nonlinearities at 0, etc. To the authors’ knowledge, no result of asymptotic stability is fully
proved for any pure power NLS equation with stable solitons, except for the integrable cubic
1D NLS discussed in §2.2. The explanation for such a situation is that this problem gathers
most of the difficulties pointed out in §3. Indeed, for pure power NLS equations, stability of
the solitons means low dimension or low nonlinearity. Moreover, except in dimension one, the
solitons are not explicit. Note that the existence of internal modes is studied in [28, 31].

5.3 Unstable NLS solitons

Part of the difficulty for the NLS equation comes from low dispersion and low nonlinearity.
It is thus natural to consider larger dimensions, or higher order nonlinearities. As discussed
above, in the focusing pure power case, this leads to unstable solitons. This section concerns
the notion of conditional asymptotic stability (asymptotic stability in unstable cases) or the
construction of center-stable manifolds with exact behavior on this manifold.

We focus on the 3D cubic NLS equation (Ḣ1/2 critical)

i∂tu+ ∆u+ |u|2u = 0, (t, x) ∈ R× R3, (6)

where the theory has been especially well-developed and successful, at least in the radial case,
in a series of works [8, 9, 36, 136, 148, 151]. The necessary spectral assumptions to obtain
dispersive estimates for the linearized equation around the soliton have been checked, first
numerically and then rigorously by computer assisted proof (see [36] and references therein).

In the following theorem Q is the unique positive radial solution of ∆Q+Q3 = Q in H1

and Qλ = λ−1Q(λ−1x).

Theorem 6 (Center stable manifold around soliton for 3D cubic NLS, [9, 36, 136, 150]).
There exists δ > 0 and a smooth manifold M⊂ H1

rad included in a ball B of H1 of center Q
and radius δ which divides B into two connected components. For any u0 ∈M, the solution u
of (6) with initial data u0 decomposes as

u(t) = eiΓ(t)Qλ(t) + v(t),

where v is small supt≥0 ‖v‖H1 . δ and scatters, i.e. v(t) = e−it∆v∞+ oH1(1) as t→ +∞, for
some small function v∞. Moreover, a solution u of (6) with initial data u0 ∈ B stays close
to the family of solitons for all time if and only if u0 ∈M.

Later, Nakanishi and Schlag classified all possible behaviors in the same framework, com-
plementing the above result by determining the behavior of the solutions for initial data on
each of the two regions separated by the manifold. See §6.3 of [136].

We also refer to [103] for previous related results in the 1D super-critical case.
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6 Asymptotic stability of solitons for gKdV

For the generalized KdV equation (4), Pego and Weinstein [143] have first considered the
question of the asymptotic stability of the family of solitons. They proved asymptotic stability
for initial data close to solitons in some exponential weighted norms. Their proof essentially
relies on linear theory and a spectral property of the linearized operator around Q. The
interest of considering weighted spaces is to remove the possibility of a soliton of size 1
perturbed by an arbitrarily small soliton Qc (the construction of such solutions is explicit in
the integrable case p = 2, see section 4). This result has been improved with the same kind
of technique in [130], using polynomial weighted spaces.

From [116, 117, 119], we state the following result in the energy space.

Theorem 7 (Asymptotic stability of the gKdV soliton in H1, [117]). Let p = 2, 3, 4. For
any β > 0, there exists δ = δ(β) > 0 such that the following is true. Let u0 ∈ H1 be such that
‖u0 −Q‖H1 ≤ δ. Then, the global solution u of (4) with initial data u0 satisfies

lim
t→+∞

‖u(t)−Qc+(· − σ(t))‖H1(x>βt) = 0,

for some c+ > 0 with |c+ − 1| . δ and some C1 function σ with σ′(t)→ c+ as t→ +∞.

Theorem 1 claims strong convergence in H1 in the region x > βt. Strong convergence in
H1(R) is never true since it would imply that u(t) is a soliton, see Remark 1. The region
where the convergence in obtained in Theorem 1 is sharp since one can construct a solution
which behaves asymptotically as t → +∞ as Q(x − t) + Qc(x − ct), where c > 0 arbitrary
(see [114, 129, 169]). In particular, choosing c > 0 small, the H1 norm of Qc(x− ct) is small,
and this soliton travels on the line x = ct. This explains the necessity of a positive β in the
convergence result. The papers [116, 117, 119] present different variants of proofs. We also
refer to the survey [163].

For the case p = 4, i.e.

∂tu+ ∂x(∂2
xu+ u4) = 0, (t, x) ∈ R× R, (7)

this theorem has been much improved in [95, 162] where it is shown that the residue scatters

in the Besov space Ḃ
−1/6,2
∞ close to the critical Sobolev space Ḣ−1/6.

Theorem 8 (Scattering to a soliton for quartic gKdV, [95, 162]). Let c0 > 0. There exists

δ > 0 such that for any u0 ∈ Ḃ−1/6,2
∞ satisfying ‖u(0) − Q‖

Ḃ
−1/6,2
∞

≤ δ, the solution u of (7)

with initial data u0 satisfies

lim
t→+∞

‖u(t)−Qc+(· − σ(t))− vL(t)‖
Ḃ
−1/6,2
∞

= 0,

where c+ > 0 and vL is a solution of the linear Airy equation.

A remarkable feature of this result is to obtain asymptotic stability with assumptions
purely in the (negative regularity) scaling space; see the discussion in [95].

The strategy of the proof of Theorem 7 have been extended to the Gross-Pitaevski equa-
tion, the Benjamin-Bona-Mahony equation, the Benjamin-Ono equation (and other KdV-type
models) see e.g. [6, 16, 38, 64, 75, 95, 131]. For the peakons of the Camassa-Holm equation,
Molinet proved recently strong related results (private communication).
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7 Solitons as blow up profiles

In this section, we recall a typical result of universality of blow up profile for the 1D mass
critical NLS equation

i∂tu+ ∂2
xu+ |u|4u = 0, (t, x) ∈ R× R. (8)

Recall the three conservation laws
∫
|u|2, E(u) =

∫ (
1
2u

2
x − 1

6 |u|6
)
, =

∫
(uxū). In the next

result, Q denotes the unique positive even solution of Q′′ +Q5 = Q.

Theorem 9 (Blow up profile for mass critical NLS, [124, 125]). There exists δ > 0 such that
if u0 ∈ H1 satisfies ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + δ and E(u0) < 0, then the solution u of (8)
with initial data u0 blows up in finite time T > 0, and

∥∥∥eiγ(t)λ1/2(t)u(t, λ(t) ·+σ(t))−Q
∥∥∥
Ḣ1
→ 0 as t ↑ T ,

for some parameters λ, γ and σ, where λ(t) ∼ c0 ((T − t)/ log | log(T − t)|)1/2 for t ∼ T .

See Theorem 2 in [124] and Theorem 1 in [125], where the result is proved also in higher
space dimensions. Note that the soliton was previouly known to be deeply related to the blow
up threshold for critical NLS, [172]. The above result is an analogue to asymptotic stability
in the neighbourhood of Q, since up to the translation and scaling parameters, solutions
converge to Q in a strong topology. Note also that much more information is known on such
blow up solutions, especially in the case of the above log-log blow up rate (see [123, 125]).

The analogy is also clear for gKdV, where techniques used to study blow up results
close to solitons in the mass critical case were adapted to the sub-critical case to prove
asymptotic stability around the solitons, see [116, 117, 118, 119]. Indeed, in both situations,
the main ingredient is a virial identity, serving as a Liapunov functional: once all the free
parameters have been adjusted (in particular the scaling in blow up problem), the residue
satisfies orthogonality conditions and it is forced to converge to zero, at least in some local
norms.

For blow up results related to solitons for the semilinear wave equation, see [48, 127].

8 Energy critical wave equation

In this section, we briefly recall some recent results related to blow up profile and the soliton
resolution conjecture for the 3D energy critical focusing wave equation

∂2
t u−∆u = u5, (t, x) ∈ R× R3. (9)

Denoting E(u, v) =
∫ (

1
2 |∇u|2 + 1

2v
2 − 1

6 |u|6
)
, the energy of a solution (u, ∂tu) of (9), defined

by E(u, ∂tu), is conserved by the flow.

The function defined by W (x) = (1 + |x|2
3 )−1/2 is the unique (up to translation) positive

Ḣ1 solution of ∆W = W 5. Recall that W has a variational characterization, related to the
best constant in the inequality ‖v‖L6 . ‖∇v‖L2 , see [5, 90, 161]. However, it has one direction
of exponential instability.

For ` ∈ R3, |`| < 1, we denote

W`(x) = W

((
1√

1− |`|2
− 1

)
`(` · x)

|`|2 + x

)
,

so that w`(t, x) = W`(x− `t) is solution of (9) (Lorentz transformation).
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8.1 Blow up profile for critical NLW

In [90], Kenig and Merle gave a classification of all possible behaviors (blow up or scattering)
of solutions whose initial data (u0, u1) satisfies E(u0, u1) < E(W, 0). Next, in [57], Duyckaerts
and Merle studied the threshold case E(u0, u1) = E(W, 0) and constructed the stable manifold
around W . Then, Duyckaerts, Kenig and Merle [58, 59] proved the following result for
solutions slightly above the threshold.

Theorem 10 (Blow up profile for 3D critical NLW, [58, 59]). There exists δ > 0 such that if
u is a solution of (9) that blows up in finite time T > 0 and

sup
[0,T )

(
‖∇u(t)‖L2 +

1

2
‖∂tu(t)‖L2

)
≤ ‖∇W‖L2 + δ,

then, as t ↑ T ,

∥∥∥∥(u(t), ∂tu(t))− (v0, v1)∓
(

1

λ1/2(t)
W`

( · − σ(t)

λ(t)

)
,− 1

λ3/2(t)
(` · ∇W`)

( · − σ(t)

λ(t)

))∥∥∥∥
L2

→ 0,

for some parameters σ, λ and ` ∈ R3, |`| < 1 and functions (v0, v1) ∈ Ḣ1 × L2.

We see that in the radial and in the nonradial cases, the family {±W`} is the universal
blow up profile. We refer to the original paper for more results and details.

We refer to [101, 102] for classification results for solutions with energy at most slightly
above the one of the ground state, and to [104, 86] for contructions of solutions with prescribed
blow up rates (called type II blow up).

8.2 The soliton resolution conjecture for critical NLW

In [60], Duyckaerts, Kenig and Merle proved a complete result of decomposition into solitons
for equation (9) in the radial case.

Theorem 11 (Soliton resolution for the 3D radial critical wave equation, [60]). Let u be
a global radial solution of (9). Then, there exist a solution vL of the linear wave equation,
K ∈ N, and for k ∈ {1, . . . ,K}, εk ∈ {−1, 1}, and λk > 0, such that, as t→ +∞,

λ1(t)� λ2(t)� · · · � λK(t)� t,

∥∥∥∥∥(u(t), ∂tu(t))−
(
vL(t) +

K∑

k=1

εk

λ
1/2
k (t)

W

( ·
λk(t)

)
, ∂tvL(t)

)∥∥∥∥∥
Ḣ1×L2

→ 0.

Note that the above result is even more complete than in the integrable gKdV case (§2.1),
since the residue is proved to scatter. A similar result holds for blow up solutions, provided
they exhibit type II blow up. The soliton resolution conjecture was later proved in non-radial
case for a subsequence of time for the 3, 4, 5D energy critical wave equation in [61, 62]. See
other similar results for the wave map problem in [37, 89].

These results are the first examples of soliton decomposition in non-integrable cases. Such
results go much beyond asymptotic stability since they apply to any initial data.
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9 One dimensional wave problems

9.1 Dynamics of NLKG around solitons

We recall from [100] (see also [136], §6.2) a result of classification around solitons (including
conditional asymptotic stability) for the 1D nonlinear Klein-Gordon equation

∂2
t u− ∂2

xu+ u = |u|p−1u, (t, x) ∈ R× R. (10)

Denote E(u, v) =
∫ (

1
2u

2
x + 1

2v
2 − 1

p+1 |u|p+1
)
, so that the energy E(u, ∂tu) of a solution is

conserved by the flow. As before, the soliton is the unique (up to translation) positive solution
Q of Q′′ +Qp = Q. Recall that for any p > 1, it has one direction of exponential instability.

Theorem 12 (Classification around the soliton for NLKG, [100, 136]). Let p > 5. There
exists δ > 0 such that for any even (u0, u1) ∈ H1 × L2, with energy E(u0, u1) < E(Q, 0) + δ,
the solution u of (10) with initial data (u0, u1) satisfies one of the following

(1) Blow up: the solution u blows up in finite time.

(2) Scattering: the solution u is global and scatters to 0 as t→ +∞.

(3) Scattering to Q: u exists globally for t ≥ 0 and scatters to Q.

In addition, the set of even initial data such that E(u0, u1) < E(Q, 0)+δ splits into nine non-
empty disjoint sets corresponding to all possible combinaisons of this trichotomy as t→ ±∞.

Note that case (2) corresponds to a local manifold of co-dimension one separating the
other two cases. A main point in the proof of Theorem 12 is to obtain dispersive estimates
in local norms using a suitable distorted Fourier transform (see Lemma 6.9 in [136]). Note
also that Hamza and Zaag gave the unique blow up rate in case (1) (see reference in [136]).

Similar results for 1 < p ≤ 5 seem to be open. Numerical and analytical arguments in [17]
suggest that the rate of convergence of solutions in case (2) to solitons should depend strongly
on the nonlinearity: for p = 3, the expected rate is t−1/2 and slower for 1 < p < 3.

9.2 The sine-Gordon equation

The one dimensional sine-Gordon equation �u + sinu = 0 has been widely studied as a
physically relevant completely integrable model (see e.g. [49, 106]). This equation has an
explicit kink solution S(x) = 4 arctan(ex) and besides it has other exceptional solutions,
among them a one parameter family of explicit, odd, time-periodic solutions called wobbling
kinks (see [47, 152]). Such wobbling kinks exist arbitrarily close to the kink. Since these
solutions are periodic in time, the sine-Gordon kink is not asymptotically stable in the energy
space. Actually, from these solutions, asymptotic stability does not hold for the sine-Gordon
equation even in a stronger topology, in contrast with the one dimensional cubic Schrödinger
equation for which changing the topology is enough to remove obstruction to asymptotic
stability (see §2.2).

Recall that this equation also has arbitrarily small breathers (see [106]), which means that
small solutions do not all converge to zero, even a weak sense (see §9.5).
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9.3 Asymptotic stability of the φ4 kink under odd perturbations

We consider in this section the φ4 model (see e.g. [49, 113, 166, 175]) in one dimension

∂2
t φ− ∂2

xφ = φ− φ3, (t, x) ∈ R× R. (11)

Recall that the energy E(φ, ∂tφ) =
∫

1
2 |∂tφ|2 + 1

2 |∂xφ|2 + 1
4

(
1− |φ|2

)2
is formally conserved

along the flow. The kink, defined by H(x) = tanh
(
x/
√

2
)

is the unique (up to sign change),
bounded, odd solution of the equation −H ′′ = H −H3. We recall that the orbital stability
of the kink with respect to small perturbations in the energy space has been proved in [82]
using the energy conservation. Here, we consider only odd perturbations in the energy space.
Note that for odd initial data, the corresponding solution of (11) is odd. Rewrite

φ = H + ϕ1, ∂tφ = ϕ2, ϕ(t) =

(
ϕ1(t)

ϕ2(t)

)
.

Then, ϕ satisfies {
∂tϕ1 = ϕ2

∂tϕ2 = −Lϕ1 − (3Hϕ2
1 + ϕ3

1)
(12)

where L = −∂2
x − 1 + 3H2 = −∂2

x + 2− 3 sech2
(
x/
√

2
)

is the linearized operator around H.

Theorem 13 (Asymptotic stability of the kink by odd perturbations, [98]). There exists
δ > 0 such that for any odd ϕ0 ∈ H1 × L2 with ‖ϕ0‖H1×L2 < δ, the solution ϕ of (12) with
initial data ϕ0 satisfies, for any bounded interval I ⊂ R,

lim
t→±∞

‖ϕ(t)‖H1(I)×L2(I) = 0.

The notion of asymptotic stability introduced in Theorem 13 is related to difficulty (i).
Indeed, as before for the (gKdV) equation, we observe that if a solution ϕ of (12) satisfies
limt→+∞ ‖ϕ(t)‖H1×L2 = 0, then by the orbital stability result [82], ϕ(t) ≡ 0 for all t ∈ R.

9.4 Convergence to zero of small solutions to NLKG

We see from (12) that the problem of asymptotic stability of the kink for φ4 reduces to
the convergence to zero of any small solution of a nonlinear Klein-Gordon equation with
variable coefficients. This 1D Klein-Gordon equation contains quadratic and cubic terms.
More generally, and independently, the long time behaviour for small solutions to NLKG
equations has been widely studied starting with the pioneering papers [93, 94, 154]. A main
delicate point is to deal with the quadratic nonlinearity, which complicates the analysis even
in dimension 3 and higher due to slow rate of decay of linear Klein-Gordon waves. Of course,
the situation is even more delicate in 1D and 2D. We refer to [52, 53, 55, 7, 109, 110, 160] for
results about small solutions for semilinear and quasilinear Klein-Gordon equations. Finally,
we mention the works [80, 81] on the modified scattering procedure for cubic and quadratic
constant coefficients NLKG equations in one dimension. Note that none of these works is
directly applicable to (12).

In addition to the aforementioned difficulties of the NLKG equations in 1D with quadratic
and cubic nonlinearities, what makes problem (12) challenging is the existence of an internal
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mode of oscillation (see §9.5). The mechanism of exchange of energy between internal oscil-
lations and the radiation part was first studied by Soffer and Weinstein [159] for a class of
nonlinear Klein-Gordon equations with potential (see also [153, 158]). More precisely, they
study the question of asymptotic stability of the vacuum state (the zero solution) for the
following Klein-Gordon equation in R3:

∂2
t u = (∆− V (x)−m2)u+ λu3, λ ∈ R, λ 6= 0. (13)

In addition to some natural hypothesis on the decay of the potential V , it is assumed that

(1) the operator LV = −∆ + V + m2 has a continuous spectrum σcont = [m,∞), a single
eigenvalue Ω2 < m2, and the bottom of its continuous spectrum is not a resonance;

(2) the Fermi Golden Rule holds (see precise statement in [159]).

Under such assumptions, they show that u = 0 is asymptotically stable, and give detailed
information on the rate of convergence of small solutions: the internal oscillation mode decays
as t−1/4, while the radiation decays as t−3/4 in the space L8. We observe both an anomalously
slow time decay rate and the existence of different decay rates for each component of the
solution. This discordance seems to hold in general, and it is also a characteristic of the φ4

problem. Note that dispersive estimates are used ultimately on the radiation part and the
fact to work in 3D (or higher) is decisive to estimate the nonlinear terms.

Returning to the φ4 problem, we mention two results more closely related to Theorem 13.
In [96, 97], the asymptotic stability of the kink is studied for the 1D equation ∂2

t u = ∂2
xu+F (u),

where the nonlinearity writes F = −W ′, for a smooth double well potential W such that
W (x) = m2

2 (x ± a)2 + O(|x ± a|14) as x → ±a. This guarantees existence of a kink U but
it excludes the φ4 model. Under further hypothesis similar to (1) and (2) above, [96] shows
asymptotic stability of the kink U with respect to odd perturbations, with explicit decay
rates: t−1/2 decay for the internal oscillations, and for the radiation, t−1 decay in weighted
Sobolev spaces. The method, inspired by [24, 22, 23, 165, 144], is based on Poincaré normal
forms and dispersive estimates.

In [42], the stability and asymptotic stability of the one dimensional kink for the φ4

model, subject to localized three dimensional perturbations, is studied. The method used
in this paper combines dispersive estimates from [170, 171] (see also [74]), together with
Klainerman vectors fields and normal forms. The fact that the space dimension is three, with
better decay estimates for free solutions, is essential in order to close the nonlinear estimates.

9.5 Sketch of the proof of Theorem 13

Here, we reproduce the sketch of the proof from [98], adding explanations related to the
general difficulties identified in §4. The operator L appearing in (12) is classical and it is
well-known (see e.g. [138]) that specL = {0, 3

2} ∪ [2,+∞). The discrete spectrum consists of
two simple eigenvalues λ0 = 0 and λ1 = 3

2 , with L2 normalized eigenfunctions, respectively
given by

Y0(x) = c0 sech2
( x√

2

)
and Y1(x) = c1 tanh

(
x√
2

)
sech

(
x√
2

)
.

Note that Y0(x) = cH ′(x) is related to the invariance of equation (11) by space translation.
Since we restrict ourselves to odd perturbations of the stationary kink, this direction is not
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relevant here. In contrast, the eigenfunction Y1, usually referred as the internal mode of
oscillation of the kink, is not related to any invariance and plays a key role in the analysis
of the long time dynamics of ϕ. Indeed, at the linear level, the internal mode is a typical
obstacle to asymptotic stability, since the time-periodic function defined by

ϕL
1 (t, x) = cos(µt)Y1(x), ϕL

2 (t, x) = −µ sin(µt)Y1(x), µ =

√
3

2
,

satisfies the linear system {
∂tϕ

L
1 = ϕL

2

∂tϕ
L
2 = −LϕL

1 .

However, in contrast with the sine-Gordon equation, no obstruction to asymptotic stability
is known at the nonlinear level so that one can hope that because of nonlinear dumping this
mode goes to zero for large time (see [105]). This observation leads to separate the mode Y1

at the linear level, and to study carefully quadratic terms for this mode. It also suggest that
the rate of convergence to zero should be rather weak. We proceed in four steps.

1. Spectral decomposition and coupling. Define

z1 = 〈ϕ1, Y1〉, z2 =
1

µ
〈ϕ2, Y1〉, z =

(
z1

z2

)

u1 = ϕ1 − z1Y1, u2 = ϕ2 − µz2Y1, u =

(
u1

u2

)
.

so that 〈u1, Y1〉 = 〈u2, Y1〉 = 0. Since LY1 = µ2Y1, we obtain





ż1 = µz2,

ż2 = −µz1 −
3

µ
〈HY 2

1 , Y1〉 z2
1 +O3,

where we use the notation O3 = O(|z|3, |z| · ‖u‖, ‖u‖2). Recall that z2 terms are important
and not considered as perturbation. In contrast, quadratic terms in u are discarded in this
discussion. The norm ‖·‖ used for u is an important issue, but we will not discuss it here. For
the rigorous treatment of the nonlinear terms (quadratic in u and cubic in z), we refer to [98].
Note that the above system in z is not enough to understand the exact behavior of (z1, z2).
Indeed, the quadratic term in z can be removed by changing variable, and the terms in O3

can drastically change the long time behavior of z. At this point, we can only deduce that

d

dt
(|z|2) = O3 where |z|2 = z2

1 + z2
2 .

For the other component (u1, u2), one checks that

{
u̇1 = u2,

u̇2 = −Lu1 − 2z2
1f +O3,

where f = 3
2

(
HY 2

1 − 〈HY 2
1 , Y1〉Y1

)
is an odd Schwartz function satisfying 〈f, Y1〉 = 0.
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The equation of z2
1 is not very handy and thus, we prefer to deal with the following

auxiliary functions

α = z2
1 − z2

2 , β = 2z1z2, satisfying

{
α̇ = 2µβ +O3

β̇ = −2µα+O3

Indeed, there is a simple way to replace the term z2
1f in the equation of u2 by a term involving

only α by introducing the unique odd solution q ∈ H1(R) of Lq = f . Indeed, we check that

v1 = u1 + |z|2q, v2 = u2, v(t) =

(
v1(t)

v2(t)

)
satisfies

{
v̇1 = v2 +O3,

v̇2 = −Lv1 − αf +O3,

and 〈v1, Y1〉 = 〈v2, Y1〉 = 0. At this point, we have obtained a coupled system in (α, β, v1, v2),
with nonlinear perturbations terms in O3, which takes into account the nonlinear coupling
between the mode Y1 and the infinite dimensional part, α and β being quadratic in z.

To study the above system, it is natural to try to remove the term −αf in the equation
of v2 to decouple at the linear level the equations of (v1, v2) and (α, β). However, this does
not seem possible. Indeed, setting, for some function g to be determined,

v1 = w1 + αg, v2 = w2 + α̇g

we see that removing the term in α in the equation of w2 requires α̈g+αLg+αf = 0. Thus,
from the equation of α, we impose that g satisfies −(L− 4µ2)g = f . One checks that setting

k(x) = ei2x
(

1 +
1

2
sech2

(
x√
2

)
+ i
√

2 tanh

(
x√
2

))
,

the equation −(L− 4µ2)g = f has a Schwartz solution if and only if 〈=k, f〉 = 0 (see [155]).
In [98], we check (numerically) that 〈=k, f〉 6= 0. This is a variant of the Fermi golden rule,
in the following sense: since no special vanishing occurs, it is not possible to decouple (v1, v2)
and (α, β), which means that the mode Y1 has strong chance to scatter at the quadratic order
in any direction through the infinite dimensionnal unknown (v1, v2).

2. Orbital stability. Using the stability result in [82], we recall that if ϕ0 is small enough
then ϕ(t) is global in time and uniformly small in H1 × L2. It follows that (u1, u2), z and
thus (v1, v2) and α, β are also small. More precisely, for all t ∈ R,

‖u(t)‖H1×L2 + ‖v(t)‖H1×L2 + |z(t)| . ‖ϕ0‖H1×L2 .

3. Virial type arguments. The large time behavior of solutions of the system in (v1, v2, α, β)
is now studied by a virial argument, inspired by [116, 117, 119]. The objective of virial
argument is to prove the following estimate:

∫ ∞

−∞

(
|z(t)|4 + ‖v(t)‖2ω

)
dt . ‖ϕ0‖H1×L2 . (14)

Here and below ‖v‖ω means the Ḣ1 × L2 norm of v with a suitable exponential weight,
‖v1‖ω and ‖v2‖ω the Ḣ1 norm of v1 and the L2 norm of v2, respectively, also with a suitable
exponential weight (as discussed above, one cannot expect such information for the global
energy norm).
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The proof of (14) is based on several ad hoc functionals. For λ = 8, let

ψ(x) = λ
√

2H
(x
λ

)
= λ
√

2 tanh
( x

λ
√

2

)
, ζ(x) =

√
ψ′(x) = sech

( x

λ
√

2

)

and, for a function g to be chosen, let

I =

∫ (
ψ∂xv1 +

1

2
ψ′v1

)
v2, J = α〈v2, g〉 − 2µβ〈v1, g〉.

Using the systems for (α, β) and (v1, v2), we find

− d

dt
(I + J ) = B(v1) + α〈v1, h〉+ α2〈f, g〉+ o(|z|4, ‖v‖2ω),

where B(v1) =
∫ {

ψ′(∂xv1)2 − 1
4ψ
′′′v2

1 − 3ψHH ′v2
1

}
and h = −

(
ψf ′ + 1

2ψ
′f − Lg + 4µ2g

)
.

As above, one checks that it is not possible to find g so that h = 0. Rewrite B using the
auxiliary function w = ζv1

B(v1) = B](w) =

∫ {
w2
x +

[
1

2

(
ζ ′′

ζ
− (ζ ′)2

ζ2

)
− 3

ψ

ψ′
HH ′

]
w2

}
.

By direct computations, one has B](w) =
∫ (
w2
x − V w2

)
, where the potential V is defined by

V (x) =
1

4λ2
sech2

( x

λ
√

2

)
+ 3λ tanh

( x

λ
√

2

)
cosh2

( x

λ
√

2

)
tanh

( x√
2

)
sech2

( x√
2

)
.

This potential is simple, explicit and exponentially decay in space. Its spectral properties can
be studied by standard methods. First, we prove that the orthogonality condition 〈v1, Y1〉 = 0
and the oddness of v1 imply B(v1) = B](w) & ‖wx‖2L2 . Second, we find a special choice of g
such that

B(v1) + α〈v1, h〉+ α2〈f, g〉 & ‖v1‖2ω + α2. (15)

The coercivity property (15) is the key estimate. Note that, as in [116, 117], we rely on the
numerical computations of some integrals to prove it. In pratice, the function g is chosen as
the unique Schwartz solution of the equation (other choices are certainly possible)

Lg − 4µ2g = ψf ′ + (a+ 1
2)ψ′f,

where a is adjusted so that the right hand side is orthogonal to =(k) ensuring that g is a
Schwartz function. It is at this point that we make use of 〈=k, f〉 6= 0 which is the Fermi
Golden Rule.

From the previous observations, we obtain the following estimate

− d

dt
(I + J ) & α2 + ‖v1‖2ω + o

(
|z|4, ‖v‖2ω

)
.

Formally, integrating in time and using the global bounds due to stability, this estimate says
that

∫ +∞
0 (α2 +‖v1‖2ω)dt . ‖ϕ0‖2H1×L2 , provided one can control the higher order error terms.

For this, we just need to control β (or |z|2) and v2.
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Now, we set γ = αβ. Then, by similar computations, γ̇ = 2µ(β2 − α2) + o
(
|z|4, ‖v‖2ω

)
.

This means that a bound on α2 gives a bound β2 and thus on |z|4. Moreover, by direct
computations, it can be proven that

‖v2‖2ω .
d

dt

∫
sech

(
x

2
√

2

)
v1v2 + C

(
|z|4 + ‖v1‖2ω

)
.

We see that for small perturbations, integrating in time a suitable linear combination of the
above estimates gives (14).

4. Convergence to the zero state for a weighted norm. From (14), it follows that there
exists a sequence tn → +∞ such that limn→+∞ ‖v(tn)‖ω + |z(tn)| = 0. For z(t), from the
estimate d

dt(|z|2) = O3, we obtain

∣∣∣∣
d

dt
|z|4
∣∣∣∣ . |z|3

(
|z|2 + ‖v‖2ω

)
.

Integrating on [t, tn], taking the limit n→ +∞ and using (14), we see that limt→+∞ |z(t)| = 0.
For v(t), we consider the functional

H =

∫ (
|∂xv1|2 + 2|v1|2 + |v2|2

)
sech (cx) ,

and we check by direct computation that for c > 0 large enough, |Ḣ| . |z|4+‖v‖2ω. Integrating
on [t, tn], and using (14), we deduce that limt→+∞H(t) = 0, which proves the result.

9.6 Other applications of the virial argument to NLKG

As observed recently in [99], virial arguments in simpler situations also give some new results
with elementary proofs. Consider the general 1D nonlinear Klein-Gordon equation

∂2
t u− ∂2

xu+ u = f(u), (t, x) ∈ R× R, (16)

where the nonlinearity f satisfies f(0) = 0 and for some p > 1, |f(u)| . |u|p for all |u| < 1.
Note that using the energy conservation, small solutions of this equation are global and
uniformly bounded in time (see e.g. Chapter 6 of [26]).

Theorem 14 (Small odd solutions of NLKG, [99]). Assume that f is odd. There exists δ > 0
such that for any odd (u0, u1) ∈ H1×L2 such that ‖(u0, u1)‖H1×L2 < δ, the global odd solution
u of (16) with initial data (u0, u1) satisfies, for any bounded interval I ⊂ R,

lim
t→+∞

‖(u(t), ∂tu(t))‖H1(I)×L2(I) = 0,

∫ +∞

0
‖(u(t), ∂tu(t))‖2H1(I)×L2(I)dt . 1.

Theorem 15 (Small solutions to NLKG with supercritical nonlinearity). Assume that for
some C > 0, f satisfies, for all |u| < 1, 1

2uf(u) − F (u) ≤ C|u|6, where F (u) =
∫ u

0 f . Then,
there exists δ > 0 such that, for any (u0, u1) ∈ H1 × L2 such that ‖(u0, u1)‖H1×L2 < δ, the
global solution u of (16) with initial data (u0, u1) satisfies, for any bounded interval I ⊂ R,

∫ +∞

0
(1 + t)−4/5‖(u(t), ∂tu(t))‖2H1(I)×L2(I)dt . 1.
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Both results imply the non-existence of small breathers under the specified assumptions.
The assumptions of Theorem 15 are not satisfied by the sine-Gordon equation, which is
consistent with the existence of arbitrarily small breathers for this equation. We refer to [105],
for a discussion on approximate breathers slowly radiating their energy, and to [56, 168] for
other closely related results of non-existence of breathers.

Note that because of the term (1 + t)−4/5, the information on the solution in Theorem 15
is weaker that the one obtained in Theorem 14 (the exponent 4/5 is not optimal). For a
sequence tn → +∞, it holds limn→+∞ ‖(u(tn), ∂tu(tn))‖H1(I)×L2(I) = 0, but we do not obtain
convergence for the whole sequence of time.

For the sake of completeness, we briefly prove Theorem 15. For λ(t) = (1 + t)1/2, let

ψ(t, x) = tanh

(
x

λ(t)

)
and I =

∫ (
ψ∂xu+

1

2
(∂xψ)u

)
u̇.

Using the equation satisfied by u, we find

d

dt
I =

∫ (
ψ̇∂xu+

1

2
(∂xψ̇)u

)
u̇−

∫ {
(∂xu)2∂xψ −

1

4
u2∂3

xψ +

(
F (u)− 1

2
uf(u)

)
∂xψ

}
.

From the definition of ψ, we have

ψ̇(t, x) = − λ̇
λ

x

λ
cosh−2

(x
λ

)
and thus |ψ̇| . 1

1 + t
cosh−1

(x
λ

)
,

∂xψ(t, x) =
1

λ
cosh−2

(x
λ

)
, ∂3

xψ(t, x) =
1

λ3

(
4 cosh−2

(x
λ

)
− 6 cosh−4

(x
λ

))
.

Therefore, we obtain the following estimates
∣∣∣∣
∫
ψ̇(∂xu)u̇

∣∣∣∣ .
1

1 + t

∫
cosh−1

(x
λ

)
|∂xu||u̇| . δ

∫
(∂xu)2∂xψ + Cδ(1 + t)−3/2

∫
|u̇|2,

∣∣∣∣
∫

(∂xψ̇)uu̇

∣∣∣∣+

∣∣∣∣
∫
u2∂3

xψ

∣∣∣∣ . (1 + t)−3/2

∫ (
|u|2 + |u̇|2

)
.

Last, by the assumption of f ,
∫ (

F (u)− 1

2
uf(u)

)
∂xψ & −

∫
|u|6∂xψ.

Moreover, from Lemma 3.3 in [121] (see also Lemma 6 in [122] and Lemma 2.1 in [139]), we
have

∫
|u|6∂xψ .

(∫
u2

)2{∫
|ux|2∂xψ +

∫
|u|2 (∂2

xψ)2

∂xψ

}
. δ4

∫
|ux|2∂xψ + (1 + t)−3/2.

Thus, we obtain (for δ > 0 small enough),

− d

dt
I &

∫
(∂xu)2∂xψ − C(1 + t)−3/2.

Integrating on (0,+∞), using the bound supt |I| . 1, we obtain

∫ +∞

0
(1 + t)−1/2

∫
(∂xu)2 cosh−2

(x
λ

)
dt . 1.
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Let I be a bounded interval of R. From the uniform bound
∫
u2 . 1, for any t ∈ R, there

exists |σ(t)| . (1 + t)1/4 such that u2(t, σ(t)) . (1 + t)−1/4. Therefore, for any x ∈ I,

u2(t, x) ≤ u2(t, σ(t)) + 2

∫

|y|.(1+t)1/4

|∂xu(t, y)||u(t, y)|dy

. (1 + t)−1/4 + (1 + t)1/4

∫

|y|.(1+t)1/4

|∂xu(t, y)|2dy.

This implies that

∫ +∞

0
(1 + t)−4/5

∫

I
(u2 + (∂xu)2)(t)dt . 1 +

∫ +∞

0
(1 + t)−11/20

∫

|y|.(1+t)1/4

|∂xu(t, y)|2dy . 1,

and the result is proved.

Remark 2. For NLKG with negative mass ∂2
t u − ∂2

xu − u = f(u), small solutions are not
necessarily global. However, considering small global solutions, it is easy to prove that they
converge to zero as in Theorem 14, without any oddness assumption or any assumption of g.
The idea is to consider ψ(x) = tanh (x) and I =

∫
ψ(∂xu)u̇. Then,

d

dt
I = −1

2

∫ (
(∂tu)2 + (∂xu)2 + u2 − F (u)

)
ψ′.

For small u, we have |F (u)| . δ|u|2, and thus, −4 d
dtI ≥

∫ (
(∂tu)2 + (∂xu)2 + u2

)
ψ′. The rest

of the proof is identical to Theorem 14 in [99]. Other results can also be proved similarly for
the zero mass case (the wave equation).
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[124] F. Merle and P. Raphaël, On universality of blow-up profile for L2 critical nonlinear Schrödinger equation.

Invent. math. 156, 565–672 (2004).
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