Deep combinatorial optimisation for optimal stopping time problems: application to swing options pricing.
MathematicS In Action, Tome 11 (2022) no. 1, pp. 243-258.

A new method for stochastic control based on neural networks and using randomisation of discrete random variables is proposed and applied to optimal stopping time problems. The method models directly the policy and does not need the derivation of a dynamic programming principle nor a backward stochastic differential equation. Unlike continuous optimization where automatic differentiation is used directly, we propose a likelihood ratio method for gradient computation. Numerical tests are done on the pricing of American and swing options. The proposed algorithm succeeds in pricing high dimensional American and swing options in a reasonable computation time, which is not possible with classical algorithms.

Publié le :
DOI : 10.5802/msia.26
Classification : 91G60, 60G40, 90C27, 97R40
Mots clés : Optimal stopping, American option, Swing option, Combinatorial optimisation, Neural network, Artificial intelligence.
Deschatre, Thomas 1 ; Mikael, Joseph 1

1 EDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie
@article{MSIA_2022__11_1_243_0,
     author = {Deschatre, Thomas and Mikael, Joseph},
     title = {Deep combinatorial optimisation for optimal stopping time problems: application to swing options pricing.},
     journal = {MathematicS In Action},
     pages = {243--258},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.26},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.26/}
}
TY  - JOUR
AU  - Deschatre, Thomas
AU  - Mikael, Joseph
TI  - Deep combinatorial optimisation for optimal stopping time problems: application to swing options pricing.
JO  - MathematicS In Action
PY  - 2022
SP  - 243
EP  - 258
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.26/
DO  - 10.5802/msia.26
LA  - en
ID  - MSIA_2022__11_1_243_0
ER  - 
%0 Journal Article
%A Deschatre, Thomas
%A Mikael, Joseph
%T Deep combinatorial optimisation for optimal stopping time problems: application to swing options pricing.
%J MathematicS In Action
%D 2022
%P 243-258
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.26/
%R 10.5802/msia.26
%G en
%F MSIA_2022__11_1_243_0
Deschatre, Thomas; Mikael, Joseph. Deep combinatorial optimisation for optimal stopping time problems: application to swing options pricing.. MathematicS In Action, Tome 11 (2022) no. 1, pp. 243-258. doi : 10.5802/msia.26. http://www.numdam.org/articles/10.5802/msia.26/

[1] Abadi, Martin; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing; Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur, Manjunath; Levenberg, Josh; Mane, Dandelion; Monga, Rajat; Moore, Sherry; Murray, Derek; Olah, Chris; Schuster, Mike; Shlens, Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul; Vanhoucke, Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Wattenberg, Martin; Wicke, Martin; Yu, Yuan; Zheng, Xiaoqiang TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015 (Software available from tensorflow.org)

[2] Andersen, Leif B. G. A simple approach to the pricing of Bermudan swaptions in the multi-factor Libor market model, 1999 (Available at SSRN 155208)

[3] Bachouch, Achref; Huré, Côme; Langrené, Nicolas; Pham, Huyên Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications, Methodol. Comput. Appl. Probab., Volume 24 (2022) no. 1, pp. 143-178 | DOI | MR | Zbl

[4] Barrera-Esteve, Christophe; Bergeret, Florent; Dossal, Charles; Gobet, Emmanuel; Meziou, Asma; Munos, Rémi; Reboul-Salze, Damien Numerical methods for the pricing of swing options: a stochastic control approach, Methodol. Comput. Appl. Probab., Volume 8 (2006) no. 4, pp. 517-540 | DOI | MR | Zbl

[5] Becker, Sebastian; Cheridito, Patrick; Jentzen, Arnulf Deep Optimal Stopping., J. Mach. Learn. Res., Volume 20 (2019) no. 74, pp. 1-25 | MR | Zbl

[6] Becker, Sebastian; Cheridito, Patrick; Jentzen, Arnulf Pricing and hedging American-style options with deep learning, J. Risk Financ. Manag., Volume 13 (2020) no. 7, p. 158 | DOI

[7] Becker, Sebastian; Cheridito, Patrick; Jentzen, Arnulf; Welti, Timo Solving high-dimensional optimal stopping problems using deep learning, Eur. J. Appl. Math., Volume 32 (2021) no. 3, pp. 470-514 | DOI | MR | Zbl

[8] Bello, Irwan; Pham, Hieu; Le, Quoc V; Norouzi, Mohammad; Bengio, Samy Neural combinatorial optimization with reinforcement learning, 2017 (Workshop Track of the International Conference on Learning Representations)

[9] Bernhart, Marie; Pham, Huyên; Tankov, Peter; Warin, Xavier Swing options valuation: A bsde with constrained jumps approach, Numerical methods in finance, Springer, 2012, pp. 379-400 | DOI | Zbl

[10] Bouchard, Bruno; Chassagneux, Jean-François Discrete-time approximation for continuously and discretely reflected BSDEs, Stochastic Processes Appl., Volume 118 (2008) no. 12, pp. 2269-2293 | DOI | MR | Zbl

[11] Bouchard, Bruno; Warin, Xavier Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods, Numerical methods in finance, Springer, 2012, pp. 215-255 | DOI | Zbl

[12] Buehler, Hans; Gonon, Lukas; Teichmann, Josef; Wood, Ben Deep hedging, Quant. Finance, Volume 19 (2019) no. 8, pp. 1271-1291 | DOI | MR | Zbl

[13] Carmona, René; Touzi, Nizar Optimal multiple stopping and valuation of swing options, Math. Finance, Volume 18 (2008) no. 2, pp. 239-268 | DOI | MR | Zbl

[14] Chan-Wai-Nam, Quentin; Mikael, Joseph; Warin, Xavier Machine learning for semi linear PDEs, J. Sci. Comput., Volume 79 (2019) no. 3, pp. 1667-1712 | DOI | MR | Zbl

[15] E, Weinan; Han, Jiequn; Jentzen, Arnulf Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat., Volume 5 (2017) no. 4, pp. 349-380 | MR | Zbl

[16] El Karoui, Nicole; Kapoudjian, Christophe; Pardoux, Étienne; Peng, Shige; Quenez, Marie-Claire et al. Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, Ann. Probab., Volume 25 (1997) no. 2, pp. 702-737 | MR

[17] Fécamp, Simon; Mikael, Joseph; Warin, Xavier Deep learning for discrete-time hedging in incomplete markets, J. Comput. Finance (2020)

[18] Garcıa, Diego Convergence and biases of Monte Carlo estimates of American option prices using a parametric exercise rule, J. Econ. Dyn. Control, Volume 27 (2003) no. 10, pp. 1855-1879 | DOI | MR | Zbl

[19] Glasserman, Paul Monte Carlo methods in financial engineering, 53, Springer, 2013

[20] Glorot, Xavier; Bengio, Yoshua Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics (2010), pp. 249-256

[21] Han, Jiequn; Jentzen, Arnulf; E, Weinan Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 34, pp. 8505-8510 | MR | Zbl

[22] Huré, Côme; Pham, Huyên; Bachouch, Achref; Langrené, Nicolas Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis, SIAM J. Numer. Anal., Volume 59 (2021) no. 1, pp. 525-557 | DOI | MR | Zbl

[23] Huré, Côme; Pham, Huyên; Warin, Xavier Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comput., Volume 89 (2020) no. 324, pp. 1547-1579 | DOI | MR | Zbl

[24] Ibáñez, Alfredo Valuation by simulation of contingent claims with multiple early exercise opportunities, Math. Finance, Volume 14 (2004) no. 2, pp. 223-248 | DOI | MR | Zbl

[25] Kohler, Michael; Krzyżak, Adam; Todorovic, Nebojsa Pricing of High-Dimensional American Options by Neural Networks, Math. Finance, Volume 20 (2010) no. 3, pp. 383-410 | DOI | MR | Zbl

[26] Longstaff, Francis A.; Schwartz, Eduardo S. Valuing American options by simulation: a simple least-squares approach, Rev. Financ. Stud., Volume 14 (2001) no. 1, pp. 113-147 | DOI

[27] Øksendal, Bernt Karsten; Sulem, Agnes Applied stochastic control of jump diffusions, 498, Springer, 2005

[28] Shreve, Steven E. Stochastic calculus for finance II: Continuous-time models, 11, Springer, 2004

[29] Sirignano, Justin; Spiliopoulos, Konstantinos DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., Volume 375 (2018), pp. 1339-1364 | DOI | MR | Zbl

[30] Sutton, Richard S.; McAllester, David A.; Singh, Satinder P.; Mansour, Yishay Policy gradient methods for reinforcement learning with function approximation, NIPS’99: Proceedings of the 12th International Conference on Neural Information Processing Systems, MIT Press (2000), pp. 1057-1063

[31] Trabelsi, Faouzi Study of undiscounted non-linear optimal multiple stopping problems on unbounded intervals, Int. J. Math. Oper. Res., Volume 5 (2013) no. 2, pp. 225-254 | DOI | MR | Zbl

[32] Warin, Xavier Gas storage hedging, Numerical methods in finance, Springer, 2012, pp. 421-445 | DOI | MR | Zbl

[33] Zhao, Tingting; Hachiya, Hirotaka; Niu, Gang; Sugiyama, Masashi Analysis and improvement of policy gradient estimation, NIPS’11: Proceedings of the 24th International Conference on Neural Information Processing Systems, Curran Associates Inc. (2011), pp. 262-270

Cité par Sources :