
MathematicS

In Action

Thomas Deschatre & Joseph Mikael
Deep combinatorial optimisation for optimal stopping time problems: application
to swing options pricing.
Volume 11 (2022), p. 243-258.
https://doi.org/10.5802/msia.26

© Les auteurs, 2022.
Cet article est mis à disposition selon les termes

de la licence Creative Commons attribution 4.0.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

MathematicS In Action est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/
e-ISSN : 2102-5754

https://doi.org/10.5802/msia.26
http://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/

MathematicS In Action
Vol. 11, 243-258 (2022)

Deep combinatorial optimisation for optimal stopping time
problems: application to swing options pricing.

Thomas Deschatre ∗
Joseph Mikael ∗∗

∗ EDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie
E-mail address: thomas-t.deschatre@edf.fr
∗∗ EDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie
E-mail address: joseph.mikael@edf.fr.

Abstract

A new method for stochastic control based on neural networks and using randomisation of discrete random
variables is proposed and applied to optimal stopping time problems. The method models directly the policy
and does not need the derivation of a dynamic programming principle nor a backward stochastic differential
equation. Unlike continuous optimization where automatic differentiation is used directly, we propose a
likelihood ratio method for gradient computation. Numerical tests are done on the pricing of American and
swing options. The proposed algorithm succeeds in pricing high dimensional American and swing options in
a reasonable computation time, which is not possible with classical algorithms.

1. Introduction

Motivation

Optimal stopping problems are particularly important for risk management as they are involved
in the pricing of American options. American-style options are used not only by traditional asset
managers but also by energy companies to hedge “optimised assets” by finding optimal decisions
to optimise their P&L and find their value. A common modelling of a power plant unit P&L is
done using swing options which are options allowing to exercise at most l ≥ 1 times the option
with possibly a constraint on the delay between two exercise dates (see [13] or [32]).

Formally, for T > 0, we are given a stochastic processes (Xt)t≥0 defined on a probability
space (Ω,F ,F = (Ft)t≥0,P) and we search for an increasing sequence of F stopping times τ =
(τ1, τ2, . . . , τl) maximizing the expectation of the objective function

EP

(
l∑

i=1
f(τi, Xτi)1τi≤T

)
.

Numerical methods to solve the optimal stopping problem when l = 1, f(t, x) = e−rtg(x) and
X is Markovian include:

• Dynamic programming equation: the option price P0 is computed using the following
backward discrete scheme over a grid t0 = 0 < t1 < · · · < tN = T :

PtN = g(XT),

Pti = max(g(Xti), e−r(ti+1−ti)EP(Pti+1 |Fti)), i = 0, . . . , N − 1.
(1.1)

One then needs to perform regression to compute the conditional expectations, see [26]
or [11].

Keywords: Optimal stopping, American option, Swing option, Combinatorial optimisation, Neural network, Ar-
tificial intelligence.
2020 Mathematics Subject Classification: 91G60, 60G40, 90C27, 97R40.

243

mailto:thomas-t.deschatre@edf.fr
mailto:joseph.mikael@edf.fr

Thomas Deschatre & Joseph Mikael

• Partial differential equation (PDE): a variational inequality derived from the Hamilton
Jacobi Bellman equation is given by

min(−(∂t + L)v + rv, v − g) = 0, v(x, T) = g(x)

where L is the infinitesimal generator of X [28, Chapter 8, Section 3.3]. A numerical
scheme can be applied to solve this PDE and find the option value.

• Reflected Backward Stochastic Differential Equation (BSDE): the value of the American
option is the solution of the reflected BSDE [16]:

Yt = g(XT)− r
∫ T

t
Ys ds−

∫ T

t
Zs dWs +KT −Kt,

Yt ≥ g(Xt), 0 ≤ t ≤ T,∫ T

0
(Yt − g(Xt))dKt = 0.

[10] provides a numerical scheme to solve these equations.

• Policy search: the decision rule or exercise region is parametrized by a vector and the
parameters are usually optimised by Monte Carlo methods as in reinforcement learn-
ing [19, Chapter 8, Section 2]; [2, 18]. The algorithm proposed in this paper is strongly
related to this class of method.

These approaches generalise well for l ≥ 1, see [13] for dynamic programming principle or [9]
for the BSDE method. The non linear case where f is of the form φ(

∑l
i=1 e

−rτig(Xτi)1τi≤T) is
studied by [31]. We refer to [19, Chapter 8] for more exhaustive details on numerical methods for
American option pricing. All these algorithms suffer from the curse of dimensionality: the number
of underlying is hardly above 5. However energy companies portfolio may trade derivatives
involving more that 4 commodities at one time (e.g. swing options indexed on C02, natural gas,
electricity, volume, fuel) and traditional numerical methods hardly provide good solutions in a
reasonable computing time.

Recently, neural network-based approaches have shown good results regarding stochastic con-
trol problems and PDE numerical resolution in high dimension, see [14, 21, 29]. In the following,
one describes literature related to optimal stopping time problems using neural networks. [6, 25]
use neural networks for regression in the dynamic programming equation (1.1). [3, 5, 22] also
use the dynamic programming equation (1.1) but neural networks are used to parameterize the
optimal policy. Weights and bias of the neural network(s) minimise at each time step the right
hand side of the dynamic programming equation (1.1), going backward. The optimal decision
consists in a continuous variable (instead of a discrete one) taking value in (0, 1) modeled by a
neural network. [15, 21, 23] use neural networks to solve BSDE’s. In [23], the neural networks
parameterizing the solution and eventually its gradient minimise the L2 loss between the left
hand-side and the right hand side of the Euler discretisation of the BSDE, going backward from
the terminal value. [3] and [23] need to maximise one criteria by time step. The approaches
of [21] and [15] are quite different: the neural network allows the parameterisation of the initial
value of the BSDE and the gradient at each time step, and it minimises the distance between
the terminal value obtained by the neural network and the terminal value of the BSDE, going
forward. American put options prices are computed in [23] up to dimension 40 with 160 time
steps. Neural networks approaches have also been used in the context of swing options pricing
in gas market in [4]. The definition of swing options slightly differs from ours as it considers a
continuous control: the option owner buys a certain amount of gas between a minimum and a
maximum quantity. It is however related to our problem as in continuous time, this option is
bang-bang: it is optimal to exercise at the minimum or the maximum level at each date, that is

244

Deep combinatorial optimisation for optimal stopping time problems

choosing between two actions. [4] directly models the policy by a neural network and optimises
the objective function as in [12, 17].

Contrarily to [3, 6, 15, 21, 22, 23, 25], the goal of this paper is to propose a reinforcement
learning algorithm to solve optimal multi-exercise (rather than one single) stopping time prob-
lems with constraints on exercise times that does not need to derive a dynamic programming
equation nor to find an equivalent BSDE of the problem. The only information needed is the
dynamic of the state process X and the objective function. This kind of algorithm is called policy
gradient and is well known in the area of reinforcement learning, see [30] for instance. Although
continuous control approximation with reinforcement learning shows good results, see [12, 17] for
European-style option hedging, the case of optimal stopping times is more difficult as it involves
controls taking values in a discrete set of actions. The problem is similar to a combinatorial
optimisation one: at each time step, an action belonging to a finite set needs to be taken. One
way to solve this problem is to perform a relaxation assuming that the control belongs to a
continuous space. For instance, if one needs to price an American option, a decision represented
by a value in {0, 1} and consisting in exercising or not must be taken. Relaxing the problem
consists in searching for solutions in [0, 1]: this relaxation has successfully been applied to a
Bermudan option pricing in a high dimensional setting (up to 1000) in [7]. These methods apply
well for American-style option pricing but seem to be not flexible enough to be extended to
swing options pricing.

Main results

Our approach follows the spirit of [17] and [7]: one directly parameterises the optimal policy
by a neural network and maximises the objective function moving forward. We propose an
algorithm using reinforcement learning in order to solve optimal stopping times problem seen as
an combinatorial optimisation problem. Note that solving combinatorial optimisation problems
with neural networks have been considered in [8] in a deterministic framework without dynamics
on the state process. The stochastic optimization framework considered in this paper is described
in Section 2.

Neural network hardly handles integer outputs which is the main difficulty of the problem
addressed in this paper. To encompass this problem, the first step of the algorithm consists in
randomizing the optimization variables (that is executing the option or not) and modelling their
law by a neural network. The second step consists in computing the gradient of the objective
function. It can not be computed as usual by automatic differentiation as the neural network
does not output the optimization variables but their law. The use of likelihood ratio method
allows to rewrite the gradient as a function of the neural network output gradient that can
be computed with automatic differentiation. The algorithm is given in Section 3. Compared to
the papers referenced above our approach allows to solve stopping time problems without any
knowledge of the dynamic programming equation or of an equivalent BSDE. Furthermore, it
presents many advantages as it

• can solve multiple optimal stopping time problems;

• allows to add in a flexible way any constraint on the stopping times;

• can then be associated with the one of [17] considering continuous actions in order to
solve stochastic impulse control problems, combining discrete and continuous controls
(see [27, Chapter 6] for more information on impulse control problems).

Let us also notice that our method does not take advantage of the linearity (possible inversion
between the sum and the expectation) of the considered optimal stopping problems contrarily
to [7] and can be applied to non linear problem, making it suitable for impulse control problems.
The theoretical convergence study of our algorithm is out of the scope of this paper.

245

Thomas Deschatre & Joseph Mikael

Numerical tests covering Bermudan and swing options are proposed in Section 4 and show
good results in the pricing of 10 underlyings Bermudan option and also on 5 underlyings swing
options having up to l = 6 exercise dates. However, our algorithm gives suboptimal results on
one of the considered case.

2. Optimal stopping

2.1. Continuous time modelling

We are given a financial market operating in continuous time. Let (Ω,F = (Ft)t≥0,F ,P) a filtered
probability space and W a d-dimensional F-Brownian motion. One assumes that F satisfies the
usual conditions of right continuity and completeness. Let T > 0 a finite horizon time and
X = (X1, X2, . . . , Xd) be the unique strong solution of the Stochastic Differential Equation
(SDE):

Xt = X0 +
∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, t ∈ [0, T] , (2.1)

with µ : [0, T] × Rd 7→ Rd and σ : [0, T] × Rd 7→ Rd×d two measurable functions verifying
|µ(t, x) − µ(t, y)| + ‖σ(t, x) − σ(t, y)‖ ≤ K1|x − y| and |µ(t, x)| + ‖σ(t, x)‖ ≤ K2(1 + |x|) for
x, y ∈ Rd and t ∈ [0, T] (| · | denotes the Euclidian distance in Rd and for a matrix A ∈
Rd×d, ‖A‖ =

√
tr(AA>)) and K1,K2 ∈ R. Using the notations of [13] and with X as defined

in (2.1) for t ∈ [0, T] and Xt = XT for t ≥ T , an optimal stopping time problem consists in
solving the problem

sup
τ∈Sl

EP

(
l∑

i=1
f(τi, Xτi)1τi≤T

)
(2.2)

where S l is the collection of all vectors of increasing stopping times τ = (τ1, . . . , τl) such that for
all i = 2, . . . , l, τi − τi−1 ≥ γ a.s. on the set of events {τi−1 ≤ T} and where f : [0, T]× Rd 7→ R
is a measurable function. l ∈ N∗ = N \ {0} corresponds to the number of possible exercises
and γ ≥ 0 to the minimum delay between two exercise dates. One wants to find the optimal
value (2.2) but also the optimal policy

τ∗ ∈ arg max
τ∈Sl

EP

(
l∑

i=1
f(τi, Xτi)1τi≤T

)
. (2.3)

2.2. Discrete time modelling

In practice, one only considers optimal stopping on a discrete time grid (for instance, the valua-
tion of a Bermudan option is used as a proxy of the American or swing option). Let us consider
N + 1 exercise dates belonging to a discrete set DN = {t0 = 0 < t1 < · · · < tN = T}, N ∈ N∗.
The problem consists in finding

sup
τ∈SlN

EP

(
l∑

i=1
f(τi, Xτi)1τi≤T

)
(2.4)

where SlN is the set of stopping times belonging to Sl (set of increasing stopping times vectors
including delay constraints) such that τi ∈ DN on {τi ≤ T}, for i = 1, . . . , l. This discretisation
is needed for our algorithm as it is needed in classical methods such as [26]. Problem (2.4) is
equivalent to the following:

sup
Y

EP

(
N∑
i=0

Yif(ti, Xti)
)

(2.5)

246

Deep combinatorial optimisation for optimal stopping time problems

where (Yi)i=0,...,N is a sequence of (Fti)i=0,...,N -measurable random variables taking values in
{0, 1} such that

N∑
i=0

Yi ≤ l (2.6)

and
Dj ≥ γ, j = 0, . . . , N, (2.7)

with

Dj = γ + tj −
j−1∑
i=0

YiDi (2.8)

the delay at tj from the last exercise assuming that we can exercise at time 0 (hence the γ term
in (2.8) allowing to start at time 0 with a delay γ) and with the convention

∑−1
i=0 · = 0. Given

a solution (Y ∗i)i=0,...,N of Problem (2.5), a proxy for the optimal control (2.3) is given on the
event {

∑N
i=0 Yi = m}, m ≤ l, by

τ∗k =
{
tmk if k ≤ m
∞ otherwise

, k ∈ {1, . . . , l},

with mk = min{j ∈ {0, . . . , N}|
∑j
i=0 Y

∗
i ≥ k} the index of the kth exercise.

3. Algorithm description

3.1. Neural network parametrization

As the Yi’s are discrete we cannot assume that they are the output of a neural network which
weights are optimised by applying a stochastic gradient descent (SGD). To overcome this diffi-
culty, one can randomize Y and consider that at each time step tj , j ∈ {1, . . . , N}, the discrete
variable Yj is a Bernoulli distributed random variable conditionally on Ftj ∪σ(Yi, i ≤ j−1) (and
Ft0 if j = 0). The Bernoulli distribution parameter depends on the state variable of our control
problem. This state variable, denoted Stj , is

• Xtj in the case of a Bermudan option, that is with only one execution date,

• (X1
tj , . . . , X

d
tj ,
∑j−1
i=0 Yi, Dj) when there are constraints (2.6) and (2.7).

Of course, one can adapt the state depending on the constraints (for instance if there is no delay
constraint (2.7), the state is (X1

tj , . . . , X
d
tj ,
∑j−1
i=0 Yi)). In the case where X is a non Markovian

process, one needs to consider that the probability for Yj to be equal to 1 is a function of all
the values of Xti for i ≤ j and Yi for i ≤ j − 1. In this case, one could use a Recurrent Neural
Network to parameterise this function but we do not consider this case here. The Bernoulli
distribution parameter, which is P(Yj = 1|Stj) is parameterised by a neural network NN defined
on [0, T] × S × Θ and taking values in R where S is the state space and Θ represents the sets
in which the biases and weights of the neural network lie. The neural network architecture is
described in Section 3.3. The parametrization is then the following:

P(Yj = 1|Stj) = expit
(
C tanh(NN(tj , Stj , θ))

)
c(Stj), j = 0, . . . , N, (3.1)

with expit : R 7→ (0, 1) and expit(x) = 1
1+e−x for x ∈ R and c(Stj) is equal to 0 if the constraints

are saturated and 1 otherwise. Typically, if there are no constraints, c is always equal to 1, and
if there are constraints (2.6) and (2.7),

c(Stj) = 1∑j−1
i=0 Yi<l

1Dj≥γ .

247

Thomas Deschatre & Joseph Mikael

Note that the methodology can be extended to any constraint on the policy. C tanh(NN(x, θ))
outputs the logit (the inverse function of expit) of P(Yj = 1|Stj) (when constraints are not
saturated). The function tanh is not necessary and one could only consider NN to parameterise
the logit of the probability. To reduce the values taken by the logit, we bound the output of
the neural using tanh and choose C such that expit(−C) ≈ 0 and expit(C) ≈ 1 ; C is given in
Section 3.4.

From now on, P is replaced by Pθ to indicate the dependence of the law of Y with θ. At this
step, we still cannot train our neural networks by applying a stochastic gradient descent because
of the Y ’s randomization.

3.2. Optimization

To approximate a solution to (2.5) we search for

θ∗ ∈ arg max
θ∈Θ

EPθ

(
N∑
i=0

Yif(ti, Xti)
)
.

Classical neural network parameter optimization consists first in evaluating the objective func-
tion

EPθ

(
N∑
i=0

Yif(ti, Xti)
)

using Monte Carlo method and replacing it by

1
Nbatch

Nbatch∑
m=1

N∑
i=0

Y m
i f(ti, Xm

ti)

with Nbatch ∈ N∗ and where Xm and Y m correspond to one realization of (X,Y) simulated
according to (2.1) for X and to Pθ for Y . Secondly, a gradient descent is done to update the
parameter θ using gradient of the objective function which is computed using backpropagation.
However in our case, it is not possible to directly use backpropagation: Y is not a function of θ,
but a discrete variable with law depending on θ.

To bypass this problem, we use a likelihood ratio method, see [19, Section 7.3]. Let us consider
a random variable Z : Ω 7→ E with probability measure Qa, a ∈ Rd, absolutely continuous with
respect to a measure Q. Let la(x) = dQa

dQ (x) be the likelihood function. We have, under some
integrability conditions, ∇aEQa(Z) = EQa(Z∇a log(la(Z))). Using this method and iterative
conditioning for probability computation, we find that the gradient of EPθ

(∑N
j=0 Yjf(tj , Xtj)

)
is

given by:

∇θEPθ

(
N∑
j=0

Yjf(tj , Xtj)
)

= EPθ

(
N∑
j=0

Yjf(tj , Xtj)
(

N∑
i=0

Yi∇θ log(Pθ (Yi = 1|Sti))

+ (1− Yi)∇θ log(1− Pθ(Yi = 1|Sti))
))

. (3.2)

Pθ(Yi = 1|Sti) which is defined in Equation (3.1) is a continuous function of the neural network:
the gradients appearing in Equation (3.2) can be easily computed using backpropagation.

The main drawback of this method is the high variance of the right hand side of (3.2). Several
methods exist to bypass this issue, the most used with neural network optimisation being the
use of a baseline, see [33].

248

Deep combinatorial optimisation for optimal stopping time problems

Every ∆test steps, the objective value is computed over the testing set. The parameters kept at
the end are the ones minimising those evaluations. The objective function is finally evaluated on
a validation set. While on the training phase actions are sampled from the outputted probability
on the training set, they are chosen equal to 1 if the probability is greater than 0.5 and 0 otherwise
on the test and validation sets. The algorithm is described in Algorithm 1 with hyperparameters
given in Section 3.4.

Remark 3.1. The method does not take any advantage of the fact that we can exchange the sum
and the expectation in (2.5). It is then suitable for optimization problems of the form

sup
Y

EP (g(Y1, t1, Xt1 , . . . , YN , tN , XtN))

and could be combined with forward neural network continuous optimization algorithms such
as those of [12, 17] to solve impulse control problems.

Algorithm 1 Algorithm for optimal stopping. The lines in blue are the main difference with
classical backpropagation.
1: α: Learning rate
2: β1, β2 ∈ [0, 1] : Exponential decay rates for the moment estimates,
3: Niter : number of iterations
4: Nbatch : number of simulations at each gradient descent iteration (batch size)
5: θ0 randomly chosen
6: m0 ← 0
7: v0 ← 0
8: for iiter = 1 . . . Niter do
9: for u = 0 . . . N do

10: Xu ← Nbatch samples simulations of Xtu

11: Su ← state value
12: pθiiter−1,u ← expit

(
C tanh(NN(tu, Su, θiiter−1))

)
c(Su)

13: Yu ← Nbatch of a Bernouilli r.v. with parameter pθiiter−1,u

14: giiter ← 1
Nbatch

∑Nbatch
n=1

(∑N
u=0 Y

n
u f(tu, Xn

u)
)

×
(∑N

u=0 Y
n
u ∇θ log

(
pθiiter−1,u

)
+ (1− Y n

u)∇θ log
(
1− pθiiter−1,u

))
15: miiter ← miiter−1 + (1− β1)giiter (update biased first moment estimate)
16: viiter ← β2viiter−1 + (1− β2)g2

iiter (update biased second raw moment estimate)
17: m̂iiter ←

miiter
1−(β1)iiter (computes bias-corrected first moment estimate)

18: v̂iiter ←
viiter

1−(β2)iiter (computes bias-corrected second raw moment estimate)
19: θiiter ← θiiter−1 − αm̂iiter/(

√
v̂iiter + ε) (update parameters)

3.3. Neural network architecture

The neural network architecture is inspired by [14] and consists in one single feed forward neural
network which features are the time step ti and the current state realisation Sti . Let t ∈ [0, T]
and x = (x1, . . . , xr)> ∈ S that we assume to be included in Rr. The neural network is defined
as follow

NN(t, x, θ) = AL+1 ◦ ρ ◦AL ◦ ρ · · · ◦A1((t, x1, . . . , xr)>)
where Al(y) = Wly + bl for l = 1, . . . , L + 1, W1 ∈ Rm×(r+1), Wl ∈ Rm×m for l = 2, . . . , L,
WL+1 ∈ R1×m, bl ∈ Rm for l = 1, . . . , L and bL+1 ∈ R. L corresponds to the number of hidden
layers and m to the number of neurons per layer (that we assume to be the same for every layer).
The (Wl)l=1,...,L+1 correspond to the weights and (bl)l=1,...,L+1 to the biases. The function ρ is

249

Thomas Deschatre & Joseph Mikael

the activation function and is chosen as the ReLu function, that is ρ(x) = max(0, x). θ is then
equal to (W1, . . . ,WL+1, b1, . . . , bL+1).

3.4. Hyper parameters

• The batch size Nbatch as the number of iterations Niter depend on the use case and are
specified at a later stage. The training set size is then equal to Niter × Nbatch. As the
likelihood ratio estimator of the gradient has high variance, choosing a large batch size
(>1000) allows for a better estimation. The drawback is that it tends to slow down the
algorithm. To reduce the variance, one could also use a baseline function as in [33].

• The test set size is chosen equal to 500 000 and the validation set size to 4 096 000 (500
000 and 4 096 000 are chosen high to have very accurate optimisation). The test set is
evaluated every ∆test = 100 steps.

• The number of hidden layers L is chosen equal to 3. The number of neurons m per layer
is constant (but can vary from a case to another).

• The learning rate (α in Algorithm 1) is chosen equal to 0.001.

• Since we use the same network at each time step, we use a mean-variance normalisation
over all the time steps to center all the inputs (ti, Xti) for all ti’s with the same coeffi-
cients. The scaling and recentering coefficients are estimated on 100 000 pre-simulated
data that is just used to this end. The mean and the standard deviation are first com-
puted for every time step over the simulations then averaged over the time steps.

• We use Xavier initialisation [20] for the weights and a zero initialisation for the biases.

• The parameter C that bounds the input of the expit function is chosen such that
expit(−C) ≈ 0 and expit(C) ≈ 1. We choose C = 10.

• The library used is [1] and the algorithm runs on a laptop with 8 cores of 2.50 GHz, a
RAM memory of 15.6 Go and without GPU acceleration.

4. Numerical results

In this section Algorithm 1 is applied to the valuation of Bermudan and swing options. The
function f(s, x) is of the form e−rsg(x) where g is the payoff of the option and r ≥ 0 is the risk
free rate. We place ourselves in the Black–Scholes framework: µ(s, x) = (r − δ)x, with δ ≥ 0
corresponding to the dividend rate and σ(s, x) = diag(x)Σ with Σ a positive definite matrix.
We choose to work with a regular time grid ti = i

N for i = 0, . . . , N . The probability measure
corresponds to the risk neutral probability and finding the value of the option consists in solving
Problem (2.5).

4.1. Bermudan options

In this section, we assume that l = 1 (only one exercise) and we consider different options to
price.

Put option. With d = 1, payoff g(x) = (K − x)+, K = 1, S0 = 1, r = 0.05, δ = 0, Σ = 0.2,
N = 10, T = 1. We consider a batch size equal to Nbatch = 5000, a neural network with a depth
of L = 3 hidden layers having m = 10 neurons each and Niter = 5000 iterations.

250

Deep combinatorial optimisation for optimal stopping time problems

Max-call option. With d ∈ {2, 10}, payoff g(x) = (max((xi)i=1,...,d) −K)+, K = 100, Si0 =
100, i = 1, . . . , d, r = 0.05, δ = 0.1, Σ = 0.2Id (Id is the identity matrix with size d× d), N = 9,
T = 3. We consider a batch size equal to Nbatch = 5000 for d = 2 and Nbatch = 12000 for d = 10,
a neural network with L = 3 hidden layers of size m = 30 for d = 2 and m = 70 for d = 10 and
Niter = 10000 iterations.

Strangle spread option. With d = 5, payoff g(x) = −(K1− 1
5
∑5
i=1 xi)+ +(K2− 1

5
∑5
i=1 xi)+

(1
5
∑5
i=1 xi −K3)+ − (1

5
∑5
i=1 xi −K4)+, K1 = 75, K2 = 90, K3 = 110, K4 = 125, Si0 = 100, i =

1, . . . , 5, r = 0.05, δ = 0,

Σ =


0.3024 0.1354 0.0722 0.1367 0.1641
0.1354 0.2270 0.0613 0.1264 0.1610
0.0722 0.0613 0.0717 0.0884 0.0699
0.1367 0.1264 0.0884 0.2937 0.1394
0.1641 0.1610 0.0699 0.1394 0.2535

 ,
N = 48, T = 1. We consider a batch size equal to Nbatch = 8000, a neural networks with L = 3
hidden layers of size m = 60 and Niter = 10000 iterations.

Losses and times obtained with Algorithm 1 are given in Table 4.1 for each case and losses
are compared to a reference value ([10] for the put option and [7] for the other options). The
algorithm succeeds in pricing Bermudan options with a high precision (relative error <1%) in
dimension up to d = 10 and number of time steps up to N = 50. The computing time is
more sensitive to the number of time steps than to the dimension: the number of neural network
estimation is equal to the number of time steps. The increase of computing time when dimension
increases is mostly caused by a need to increase the batch size and a more important simulation
time. Algorithm 1 succeeds in pricing Bermudan options and solves problems that are usually
hard to solve and very expensive in terms of computation time as they suffer from the curse
of dimensionality. The training and testing learning curves are given in Figure 4.1. The testing
errors are relatively stable for the put and the max-call options but less stable for the strangle
spread. For the put and the 2 dimensional max-call, the testing error converges quickly to the
optimal value. The testing error of the 10 dimensional max-call decreases more slowly. The
different training errors are all noisy as they are of smaller size.

Once trained, the neural network allows to compute the probability to exercise according to
the price and time to maturity, then the exercise region in a few seconds, see Figure 4.2 for
the Bermudan put option. The probability to exercise has a S-shape with limit values 0 and
1 (do not exercise and exercise) and a small transition region between those two values. As
expected, the first value such that the probability becomes 0 increases when time to maturity
decreases. This is confirmed in the exercise region in Figure 4.1 with the frontier decreasing
with time to maturity. The exercise region is the one below the curve, which is computed using
the first value such that the probability of exercise is below 0.5. The frontier is extrapolated
from the neural network trained only on a discrete time grid but that allows to use different
time to maturity values (even ones not used in the training), which is not possible with classical
backward optimisation.

4.2. Swing options without delay

In this section, we consider a swing option without delay constraint. We compare in Table 4.2
the results obtained by Algorithm 1 with the results of [24] in the case of a put option with
d = 1, g(x) = (K − x)+, K = 40, S0 ∈ {35, 40, 45}, r = 0.0488, δ = 0, Σ = 0.25, N = 12,
T = 0.25, l ∈ {1, 2, 3, 4, 5, 6} and no delay. We consider a batch size equal to Nbatch = 2000, a
neural networks with L = 3 hidden layers with size m = 10 and Niter = 5000 iterations. Every
case takes around 4 minutes to converge, see Table 4.3. The algorithm gives very accurate results

251

Thomas Deschatre & Joseph Mikael

Table 4.1. Results obtained on different Bermudan options pricing with Algo-
rithm 1 with the relative difference between Algorithm 1 and a reference value
(given by [11] for the put option and by [7] for the other options). The time in
seconds corresponds to the time of training and predicting.

Use case / Method Algorithm 1 Reference Difference Time (s)
Bermudan put 0.0603 0.0603 0.06% 393.9
Max-call, d = 2 13.8787 13.8990 0.15% 1377.8
Max-call, d = 10 38.0347 38.2780 0.64% 5968.7
Strangle spread 11.7681 11.7940 0.22% 12991.3

(a) Put. (b) Max-call, d = 2.

(c) Max-call, d = 10. (d) Strangle spread.

Figure 4.1. Learning curves for the different Bermudan options.

in a short period of time for the valuation of the swing options. As for the Bermudan put option,
it is possible to compute the probability of exercise and the exercise region for this swing option,
see Figure 4.3. Those quantities depend now on the remaining number of exercises. As expected,
the first value such that the probability to exercise is 0 increases with the remaining number of
exercises. The exercise frontier should increase with the remaining number of exercises which is
the case most of the time: the curve for a remaining number of exercises equal to 6 goes below
the ones with a remaining number of exercises equal to 5 (resp. 4) when time to maturity is
greater than 0.1 (resp. 0.15). To improve the convergence of the case l = 6, one could use the
results from the case l = 5 by for instance constraining the exercise region in Figure 4.3 to be
above the one of the case l = 5.

To assess the performance of Algorithm 1 in high dimension, let us consider the pricing of the
geometrical put option having payoff g(x) = (K−

∏d
i=1 xi)+. Let d = 5, K = 40, Si0 = 401/5, r =

0.0488, δ = 4r
5 , Σ = 0.25√

5 I5, N = 12, T = 0.25 and l ∈ {1, 2, 3, 4, 5, 6}. Prices dynamic parameters
are chosen in order to have an option value equal to the one dimensional case put option value:

252

Deep combinatorial optimisation for optimal stopping time problems

(a) Probability of exercise.

(b) Exercise region.

Figure 4.2. Probability of exercise and exercise region (region below the curve)
for the Bermudan put option computed from the trained neural network.

the product of the components of X follows a Black–Scholes dynamic with drift parameter
equal to 0.0488 and volatility equal to 0.25. It allows to have a reference value (from [24]) while

253

Thomas Deschatre & Joseph Mikael

Table 4.2. Comparison of results obtained by Algorithm 1 with the ones of [24]
for different initial values S0 and different number of executions l. The first value
corresponds to the swing option value obtained with Algorithm 1, the second
value to the one in [24] and the third value is the relative difference in %.

l / S0 35 40 45
1 (5.104, 5.114, 0.19%) (1.776, 1.774, 0.12%) (0.409, 0.411, 0.42%)
2 (10.165, 10.195, 0.29%) (3.492, 3.48, 0.34%) (0.772, 0.772, 0.06%)
3 (15.194, 15.23, 0.24%) (5.115, 5.111, 0.07%) (1.09, 1.089, 0.09%)
4 (20.188, 20.23, 0.21%) (6.658, 6.661, 0.05%) (1.358, 1.358, 0.0%)
5 (25.19, 25.2, 0.04%) (8.148, 8.124, 0.3%) (1.58, 1.582, 0.12%)
6 (30.156, 30.121, 0.12%) (9.494, 9.502, 0.09%) (1.764, 1.756, 0.44%)

Table 4.3. Time in seconds for training and predicting with Algorithm 1 to
price the swing put option for different initial values S0 and different number of
executions l.

l / S0 35 40 45
1 270.1 278.6 249.9
2 241.6 246.6 236.8
3 240.6 237.7 243.4
4 239.6 242.4 240.0
5 271.3 239.9 235.3
6 243.8 240.9 241.7

considering a high dimensional case. We consider a batch size equal to Nbatch = 8000, a neural
networks with L = 3 hidden layers of size m = 30 and Niter = 5000 iterations. Results are given
in Table 4.4. The algorithm succeeds in pricing this option with 5 underlyings in a reasonable
time (less than 30 minutes). By using a less costly hyperparameterization (m = 20 neurons
density) instead of m = 30, Niter = 2000 iterations instead of 5000, Nbatch = 3000 instead
of 8000 we are able to obtain results in less than 4 minutes with a 2% accuracy as shown in
Table 4.5.

Table 4.4. Comparison of results obtained by Algorithm 1 for the pricing of a
5 dimensional swing put option with the reference values reported in [24]. The
time in seconds corresponds to the time of training and predicting.

Use case / Method Algorithm 1 Reference Difference Time (s)
l = 1 1.767 1.774 0.39% 1814.3
l = 2 3.478 3.480 0.04% 1686.6
l = 3 5.100 5.111 0.22% 1701.5
l = 4 6.639 6.661 0.32% 1661.0
l = 5 8.117 8.124 0.09% 1689.2
l = 6 9.478 9.502 0.25% 1675.7

254

Deep combinatorial optimisation for optimal stopping time problems

(a) Probability of exercise at time t = 0.125.

(b) Exercise region.

Figure 4.3. Probability of exercise and exercise region (region below the curve)
for the swing put option with strike 40 and maximum number of exercises 6.

255

Thomas Deschatre & Joseph Mikael

Table 4.5. Comparison of results obtained by Algorithm 1 with suboptimal
hyperparameters for the pricing of a 5 dimensional swing put option with the
reference values reported in [24]. The time in seconds corresponds to the time of
training and predicting.

Use case / Method Algorithm 1 Reference Difference Time (s)
l = 1 1.733 1.774 2.33% 221.9
l = 2 3.435 3.480 1.29% 222.0
l = 3 5.074 5.111 0.71% 212.2
l = 4 6.591 6.661 1.05% 199.4
l = 5 8.033 8.124 1.13% 197.0
l = 6 9.392 9.502 1.16% 203.0

4.3. Swing options with delay

Let us now consider the case of a put option with d = 1, g(x) = (K − x)+, K = 100, S0 = 100,
r = 0.05, δ = 0, Σ = 0.3, N = 50, T = 1, γ = 5 TN and l ∈ {1, 2, 3, 4, 5}. Delay constraint
is now present and a higher number of dates is considered. We consider a batch size equal to
Nbatch = 5000, a neural networks with L = 3 hidden layers of size m = 10 and Niter = 10000
iterations. We compare in Table 4.6 the results obtained with Algorithm 1 to the ones obtained
with [13]. The algorithm gives satisfying results but when compared to results of Table 4.5, we
notice a loss of performances as l increases. This may be due to the delay constraint that is
added in this case. We tried to change the architecture of the neural networks without noticing
a significant improvement of the algorithm.

Table 4.6. Comparison of results obtained by Algorithm 1 with the reference
values reported in [13]. The time in seconds corresponds to the time of training
and predicting.

Use case / Method Algorithm 1 Reference Difference Time (s)
l = 1 9.844 9.85 0.06% 5430.5
l = 2 19.093 19.26 0.87% 6658.0
l = 3 27.827 28.80 3.38% 5518.4
l = 4 36.058 38.48 6.29% 5566.1
l = 5 43.638 48.32 9.69% 5472.1

5. Conclusion and perspectives

A stochastic control algorithm able to deal with (discrete) optimal stopping variables is pre-
sented. The different use cases show that the proposed algorithm is able to solve optimal stopping
time problems in a reasonable time, even when the dimension is high and also for multi-exercise.
The algorithm is simple and allows us to find an optimal policy without any knowledge on the
dynamic programming equation. The method presented in this paper avoids a costly backward
pass and only needs a forward pass. While the computation time increases a little with dimen-
sion, it increases a lot more with the number of time steps and the algorithm can have troubles
to converge. To confirm all those results, one should study the theoretical convergence of the
algorithm. This algorithm could easily be extended to impulse control if combined with [17] in
order to solve problems involving both continuous and discrete controls such as hedging with
fixed transaction costs.

256

Deep combinatorial optimisation for optimal stopping time problems

Acknowledgements

This research is supported by the department OSIRIS1 of EDF Lab and FiME2 Laboratory which
are gratefully acknowledged. We would like to thank the referee for constructive comments that
helped to improve the quality of the manuscript.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems, 2015. Software available from tensorflow.org.

[2] Leif B. G. Andersen. A simple approach to the pricing of Bermudan swaptions in the multi-factor
Libor market model, 1999. Available at SSRN 155208.

[3] Achref Bachouch, Côme Huré, Nicolas Langrené, and Huyên Pham. Deep neural networks algorithms
for stochastic control problems on finite horizon: numerical applications. Methodol. Comput. Appl.
Probab., 24(1):143–178, 2022.

[4] Christophe Barrera-Esteve, Florent Bergeret, Charles Dossal, Emmanuel Gobet, Asma Meziou, Rémi
Munos, and Damien Reboul-Salze. Numerical methods for the pricing of swing options: a stochastic
control approach. Methodol. Comput. Appl. Probab., 8(4):517–540, 2006.

[5] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep Optimal Stopping. J. Mach. Learn.
Res., 20(74):1–25, 2019.

[6] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Pricing and hedging American-style options
with deep learning. J. Risk Financ. Manag., 13(7):158, 2020.

[7] Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. Solving high-dimensional op-
timal stopping problems using deep learning. Eur. J. Appl. Math., 32(3):470–514, 2021.

[8] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning, 2017. Workshop Track of the International Conference on
Learning Representations.

[9] Marie Bernhart, Huyên Pham, Peter Tankov, and Xavier Warin. Swing options valuation: A bsde
with constrained jumps approach. In Numerical methods in finance, pages 379–400. Springer, 2012.

[10] Bruno Bouchard and Jean-François Chassagneux. Discrete-time approximation for continuously and
discretely reflected BSDEs. Stochastic Processes Appl., 118(12):2269–2293, 2008.

[11] Bruno Bouchard and Xavier Warin. Monte-Carlo valuation of American options: facts and new
algorithms to improve existing methods. In Numerical methods in finance, pages 215–255. Springer,
2012.

[12] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quant. Finance,
19(8):1271–1291, 2019.

[13] René Carmona and Nizar Touzi. Optimal multiple stopping and valuation of swing options. Math.
Finance, 18(2):239–268, 2008.

[14] Quentin Chan-Wai-Nam, Joseph Mikael, and Xavier Warin. Machine learning for semi linear PDEs.
J. Sci. Comput., 79(3):1667–1712, 2019.

1Optimization, SImulation, RIsk and Statistics for energy markets
2Finance des marchés de l’énergie

257

Thomas Deschatre & Joseph Mikael

[15] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential equations.
Commun. Math. Stat., 5(4):349–380, 2017.

[16] Nicole El Karoui, Christophe Kapoudjian, Étienne Pardoux, Shige Peng, Marie-Claire Quenez, et al.
Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab.,
25(2):702–737, 1997.

[17] Simon Fécamp, Joseph Mikael, and Xavier Warin. Deep learning for discrete-time hedging in incom-
plete markets. J. Comput. Finance, 2020.

[18] Diego Garcıa. Convergence and biases of Monte Carlo estimates of American option prices using a
parametric exercise rule. J. Econ. Dyn. Control, 27(10):1855–1879, 2003.

[19] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer, 2013.
[20] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-

ral networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

[21] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proc. Natl. Acad. Sci. USA, 115(34):8505–8510, 2018.

[22] Côme Huré, Huyên Pham, Achref Bachouch, and Nicolas Langrené. Deep neural networks algorithms
for stochastic control problems on finite horizon: convergence analysis. SIAM J. Numer. Anal.,
59(1):525–557, 2021.

[23] Côme Huré, Huyên Pham, and Xavier Warin. Deep backward schemes for high-dimensional nonlinear
PDEs. Math. Comput., 89(324):1547–1579, 2020.

[24] Alfredo Ibáñez. Valuation by simulation of contingent claims with multiple early exercise opportu-
nities. Math. Finance, 14(2):223–248, 2004.

[25] Michael Kohler, Adam Krzyżak, and Nebojsa Todorovic. Pricing of High-Dimensional American
Options by Neural Networks. Math. Finance, 20(3):383–410, 2010.

[26] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulation: a simple
least-squares approach. Rev. Financ. Stud., 14(1):113–147, 2001.

[27] Bernt Karsten Øksendal and Agnes Sulem. Applied stochastic control of jump diffusions, volume 498.
Springer, 2005.

[28] Steven E. Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11. Springer,
2004.

[29] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys., 375:1339–1364, 2018.

[30] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS’99: Proceedings of the
12th International Conference on Neural Information Processing Systems, pages 1057–1063. MIT
Press, 2000.

[31] Faouzi Trabelsi. Study of undiscounted non-linear optimal multiple stopping problems on unbounded
intervals. Int. J. Math. Oper. Res., 5(2):225–254, 2013.

[32] Xavier Warin. Gas storage hedging. In Numerical methods in finance, pages 421–445. Springer, 2012.
[33] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of

policy gradient estimation. In NIPS’11: Proceedings of the 24th International Conference on Neural
Information Processing Systems, pages 262–270. Curran Associates Inc., 2011.

258

	1. Introduction
	Motivation
	Main results

	2. Optimal stopping
	2.1. Continuous time modelling
	2.2. Discrete time modelling

	3. Algorithm description
	3.1. Neural network parametrization
	3.2. Optimization
	3.3. Neural network architecture
	3.4. Hyper parameters

	4. Numerical results
	4.1. Bermudan options
	4.2. Swing options without delay
	4.3. Swing options with delay

	5. Conclusion and perspectives
	Acknowledgements
	References

