We generalize a classical result of Andrianov on the decomposition of Hecke polynomials. If is a connected reductive group defined over a non-archimedean local field , we give a criterion for when a polynomial with coefficients in the spherical parahoric Hecke algebra of decomposes over a parabolic Hecke algebra associated with a non-obtuse parabolic subgroup of . We classify the non-obtuse parabolics. This then shows that our decomposition theorem covers all the classical cases due to Andrianov and Gritsenko. We also obtain new cases when the relative root system of contains factors of types or .
On généralise un résultat classique d’Andrianov sur la décomposition des polynômes de Hecke. Pour un groupe connexe réductif défini sur un corps local non-archimédien , on donne un critère pour déterminer sous quelles conditions un polynôme à coefficients dans une algèbre de Hecke sphérique parahorique de se décompose sur une algèbre de Hecke parabolique associée à un groupe parabolique non obtus de . On donne une classification des groupes paraboliques non obtus. Ceci montre alors que notre théorème de décomposition couvre tous les cas classiques dûs à Andrianov et Gritsenko. De plus, on obtient des cas nouveaux où le système de racines relatives de contient des facteurs de types ou .
Revised:
Accepted:
Published online:
Keywords: Hecke Polynomials, Hecke algebras, reductive groups, Satake homomorphism, Iwasawa decomposition, Cartan decomposition
@article{JTNB_2022__34_3_941_0, author = {Heyer, Claudius}, title = {On the {Decomposition} of {Hecke} {Polynomials} over {Parabolic} {Hecke} {Algebras}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {941--997}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1235}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1235/} }
TY - JOUR AU - Heyer, Claudius TI - On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 941 EP - 997 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1235/ DO - 10.5802/jtnb.1235 LA - en ID - JTNB_2022__34_3_941_0 ER -
%0 Journal Article %A Heyer, Claudius %T On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras %J Journal de théorie des nombres de Bordeaux %D 2022 %P 941-997 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1235/ %R 10.5802/jtnb.1235 %G en %F JTNB_2022__34_3_941_0
Heyer, Claudius. On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 941-997. doi : 10.5802/jtnb.1235. http://www.numdam.org/articles/10.5802/jtnb.1235/
[1] On factorization of Hecke polynomials for the symplectic groups of genus , Math. USSR, Sb., Volume 33 (1977) no. 3, pp. 343-373 | DOI
[2] The multiplicative arithmetic or Siegel modular forms, Russ. Math. Surv., Volume 34 (1979) no. 1, pp. 75-148 | DOI | Zbl
[3] Modular Forms and Hecke Operators, Translations of Mathematical Monographs, 145, American Mathematical Society, 1995 | Zbl
[4] Groupes et algèbres de lie: Chapitres 4, 5 et 6, Éléments de Mathématiques, Masson, 1981
[5] Groupes réductifs sur un corps local. I: Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | Zbl
[6] Groupes réductifs sur un corps local. II: Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci., Volume 60 (1984), pp. 5-184 | Zbl
[7] Smooth representations of reductive -adic groups: structure theory via types, Proc. Lond. Math. Soc., Volume 77 (1998) no. 3, pp. 582-634 | DOI | Zbl
[8] Comparison of the Bruhat and the Iwahori decompositions of a -Adic Chevalley group, J. Algebra, Volume 167 (1994) no. 3, pp. 704-723 | DOI | Zbl
[9] The action of modular operators on the Fourier–Jacobi coefficients of modular forms, Math. USSR, Sb., Volume 47 (1984) no. 1, pp. 237-268 | DOI | Zbl
[10] Parabolic extensions of a Hecke ring of the general linear group, J. Sov. Math., Volume 43 (1988) no. 4, pp. 2533-2540 | DOI | Zbl
[11] Expansion of Hecke polynomials of classical groups, Math. USSR, Sb., Volume 65 (1990) no. 2, pp. 333-356 | DOI | Zbl
[12] Parabolic extensions of the Hecke ring of the general linear group. II, J. Sov. Math., Volume 62 (1992) no. 4, pp. 2869-2882 | DOI
[13] The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory, Volume 14 (2010), pp. 264-284 | DOI | Zbl
[14] A Satake isomorphism for representations modulo of reductive groups over local fields, J. Reine Angew. Math., Volume 701 (2015), pp. 33-75 | Zbl
[15] A Satake isomorphism in characteristic , Compos. Math., Volume 147 (2011) no. 1, pp. 263-283 | DOI | Zbl
[16] Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials, Ph. D. Thesis, Humboldt-Universität zu Berlin (2019)
[17] Localization of the Parabolic Hecke Algebra at a Strictly Positive Element (2021) (https://arxiv.org/abs/2103.16949)
[18] Parabolic induction via the parabolic pro- Iwahori–Hecke algebra, Represent. Theory, Volume 25 (2021), pp. 807-843 | DOI | Zbl
[19] Reflection groups and coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990 | DOI
[20] On -adic -functions for over totally real fields, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 7884-7949 | DOI | Zbl
[21] Decomposition of double cosets in -adic groups, Pac. J. Math., Volume 197 (2001) no. 1, pp. 97-117 | DOI | Zbl
[22] Spherical functions on a group of -adic type, Publ. Ramanujan Inst., 2, 1971
[23] Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, 2003 | DOI
[24] A positivity property of the Satake isomorphism, Manuscr. Math., Volume 101 (2000) no. 2, pp. 153-166 | DOI | Zbl
[25] Representation theory and sheaves on the Bruhat-Tits building, Publ. Math., Inst. Hautes Étud. Sci., Volume 85 (1997) no. 1, pp. 97-191 | DOI | Numdam | Zbl
[26] Construction de -modules en caractéristique p, Ph. D. Thesis, École normale supérieure de Lyon – ENS LYON (2012)
[27] Représentations -modulaires d’un groupe réductif -adique avec , Progress in Mathematics, 137, Birkhäuser, 1996 | Numdam
[28] The pro- Iwahori Hecke algebra of a reductive -adic group I, Compos. Math., Volume 152 (2016) no. 4, pp. 693-753 | DOI | Zbl
Cited by Sources: