On généralise un résultat classique d’Andrianov sur la décomposition des polynômes de Hecke. Pour un groupe connexe réductif
We generalize a classical result of Andrianov on the decomposition of Hecke polynomials. If
Révisé le :
Accepté le :
Publié le :
Mots-clés : Hecke Polynomials, Hecke algebras, reductive groups, Satake homomorphism, Iwasawa decomposition, Cartan decomposition
@article{JTNB_2022__34_3_941_0, author = {Heyer, Claudius}, title = {On the {Decomposition} of {Hecke} {Polynomials} over {Parabolic} {Hecke} {Algebras}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {941--997}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1235}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1235/} }
TY - JOUR AU - Heyer, Claudius TI - On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 941 EP - 997 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1235/ DO - 10.5802/jtnb.1235 LA - en ID - JTNB_2022__34_3_941_0 ER -
%0 Journal Article %A Heyer, Claudius %T On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras %J Journal de théorie des nombres de Bordeaux %D 2022 %P 941-997 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1235/ %R 10.5802/jtnb.1235 %G en %F JTNB_2022__34_3_941_0
Heyer, Claudius. On the Decomposition of Hecke Polynomials over Parabolic Hecke Algebras. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 3, pp. 941-997. doi : 10.5802/jtnb.1235. https://www.numdam.org/articles/10.5802/jtnb.1235/
[1] On factorization of Hecke polynomials for the symplectic groups of genus
[2] The multiplicative arithmetic or Siegel modular forms, Russ. Math. Surv., Volume 34 (1979) no. 1, pp. 75-148 | DOI | Zbl
[3] Modular Forms and Hecke Operators, Translations of Mathematical Monographs, 145, American Mathematical Society, 1995 | Zbl
[4] Groupes et algèbres de lie: Chapitres 4, 5 et 6, Éléments de Mathématiques, Masson, 1981
[5] Groupes réductifs sur un corps local. I: Données radicielles valuées, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | Zbl
[6] Groupes réductifs sur un corps local. II: Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci., Volume 60 (1984), pp. 5-184 | Zbl
[7] Smooth representations of reductive
[8] Comparison of the Bruhat and the Iwahori decompositions of a
[9] The action of modular operators on the Fourier–Jacobi coefficients of modular forms, Math. USSR, Sb., Volume 47 (1984) no. 1, pp. 237-268 | DOI | Zbl
[10] Parabolic extensions of a Hecke ring of the general linear group, J. Sov. Math., Volume 43 (1988) no. 4, pp. 2533-2540 | DOI | Zbl
[11] Expansion of Hecke polynomials of classical groups, Math. USSR, Sb., Volume 65 (1990) no. 2, pp. 333-356 | DOI | Zbl
[12] Parabolic extensions of the Hecke ring of the general linear group. II, J. Sov. Math., Volume 62 (1992) no. 4, pp. 2869-2882 | DOI
[13] The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory, Volume 14 (2010), pp. 264-284 | DOI | Zbl
[14] A Satake isomorphism for representations modulo
[15] A Satake isomorphism in characteristic
[16] Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials, Ph. D. Thesis, Humboldt-Universität zu Berlin (2019)
[17] Localization of the Parabolic Hecke Algebra at a Strictly Positive Element (2021) (https://arxiv.org/abs/2103.16949)
[18] Parabolic induction via the parabolic pro-
[19] Reflection groups and coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990 | DOI
[20] On
[21] Decomposition of double cosets in
[22] Spherical functions on a group of
[23] Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, 2003 | DOI
[24] A positivity property of the Satake isomorphism, Manuscr. Math., Volume 101 (2000) no. 2, pp. 153-166 | DOI | Zbl
[25] Representation theory and sheaves on the Bruhat-Tits building, Publ. Math., Inst. Hautes Étud. Sci., Volume 85 (1997) no. 1, pp. 97-191 | DOI | Numdam | Zbl
[26] Construction de
[27] Représentations
[28] The pro-
Cité par Sources :