Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 917-939.

In this article, we introduce combinatorial models for poly-Bernoulli polynomials and poly-Euler numbers of both kinds. As their applications, we provide combinatorial proofs of some identities involving poly-Bernoulli polynomials.

Dans cet article, nous introduisons des modèles combinatoires pour les analogues en plusieurs variables des polynômes de Bernoulli et des nombres d’Euler de deux types. Comme application, nous donnons des preuves combinatoires de certaines identités faisant intervenir les polynômes de Bernoulli généralisés.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1234
Classification: 05A05, 05A19, 11B68
Keywords: Poly-Bernoulli polynomial, poly-Euler number
Bényi, Beáta 1; Matsusaka, Toshiki 2

1 Faculty of Water Sciences, University of Public Service, Baja, Hungary
2 Faculty of Mathematics, Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
@article{JTNB_2022__34_3_917_0,
     author = {B\'enyi, Be\'ata and Matsusaka, Toshiki},
     title = {Combinatorial aspects of {poly-Bernoulli} polynomials and {poly-Euler} numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {917--939},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {3},
     year = {2022},
     doi = {10.5802/jtnb.1234},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1234/}
}
TY  - JOUR
AU  - Bényi, Beáta
AU  - Matsusaka, Toshiki
TI  - Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 917
EP  - 939
VL  - 34
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1234/
DO  - 10.5802/jtnb.1234
LA  - en
ID  - JTNB_2022__34_3_917_0
ER  - 
%0 Journal Article
%A Bényi, Beáta
%A Matsusaka, Toshiki
%T Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 917-939
%V 34
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1234/
%R 10.5802/jtnb.1234
%G en
%F JTNB_2022__34_3_917_0
Bényi, Beáta; Matsusaka, Toshiki. Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 917-939. doi : 10.5802/jtnb.1234. http://www.numdam.org/articles/10.5802/jtnb.1234/

[1] Arakawa, Tsuneo; Kaneko, Masanobou Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., Volume 153 (1999), pp. 189-209 | DOI | MR | Zbl

[2] Bayad, Abdelmejid; Hamahata, Yoshinori Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., Volume 65 (2011) no. 1, pp. 15-24 | DOI | MR | Zbl

[3] Bényi, Beáta; Hajnal, Péter Combinatorial properties of poly-Bernoulli relatives, Integers, Volume 17 (2017), A31, 26 pages | MR | Zbl

[4] Bényi, Beáta; Matsusaka, Toshiki On the combinatorics of symmetrized poly-Bernoulli numbers, Electron. J. Comb., Volume 28 (2021) no. 1, 1.47, 20 pages | DOI | MR | Zbl

[5] Brewbaker, Chad A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, Integers, Volume 8 (2008), A02, 9 pages | MR | Zbl

[6] Broder, Andrei Z. The r-Stirling numbers, Discrete Math., Volume 49 (1984) no. 3, pp. 241-259 | DOI | MR | Zbl

[7] Carlitz, Leonard Weighted Stirling numbers of the first and second kind. I, Fibonacci Q., Volume 18 (1980) no. 2, pp. 147-162 | MR | Zbl

[8] Carlitz, Leonard Weighted Stirling numbers of the first and second kind. II, Fibonacci Q., Volume 18 (1980) no. 3, pp. 242-257 | MR | Zbl

[9] Coppo, Marc-Antoine; Candelpergher, Bernard The Arakawa-Kaneko zeta function, Ramanujan J., Volume 22 (2010) no. 2, pp. 153-162 | DOI | MR | Zbl

[10] Hoşten, Serkan; Sullivant, Seth The algebraic complexity of maximum likelihood estimation for bivariate missing data, Algebraic and geometric methods in statistics, Cambridge University Press, 2010, pp. 123-133 | MR

[11] Kaneko, Masanobou Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997) no. 1, pp. 221-228 | DOI | Numdam | MR | Zbl

[12] Kargın, Levent; Cenkci, Mehmet; Dil, Ayhan; Can, Mümün Generalized harmonic numbers via poly-Bernoulli polynomials (2021) (https://arxiv.org/abs/2008.00284v2)

[13] Knuth, Donald E. Johann Faulhaber and sums of powers, Math. Comput., Volume 61 (1993) no. 203, pp. 277-294 | DOI | MR | Zbl

[14] Komatsu, Takao Complementary Euler numbers, Period. Math. Hung., Volume 75 (2017) no. 2, pp. 302-314 | DOI | MR | Zbl

[15] Komatsu, Takao On poly-Euler numbers of the second kind, Algebraic number theory and related topics 2016 (RIMS Kôkyûroku Bessatsu), Volume B77, Research Institute for Mathematical Sciences, 2020, pp. 143-158 | Zbl

[16] Komatsu, Takao; Luca, Florian Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers, Ann. Math. Inform., Volume 41 (2013), pp. 99-105 | MR | Zbl

[17] Komatsu, Takao; Zhu, Huilin Hypergeometric Euler numbers, AIMS Math., Volume 5 (2020) no. 2, pp. 1284-1303 | DOI | MR | Zbl

[18] Koumandos, Stamatis; Pedersen, Henrik Laurberg Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers, Math. Nachr., Volume 285 (2012) no. 17-18, pp. 2129-2156 | DOI | MR | Zbl

[19] Laissaoui, Diffalah; Bounebirat, Fouad; Rahmani, Mourad On the hyper-sums of powers of integers, Miskolc Math. Notes, Volume 18 (2017) no. 1, pp. 307-314 | DOI | MR | Zbl

[20] Lang, Robert J.; Howell, Larry Rigidly Foldable Quadrilateral Meshes From Angle Arrays, J. Mech. Robot., Volume 10 (2018) no. 2, 021004, 11 pages | DOI

[21] Letsou, William; Cai, Long Noncommutative Biology: Sequential Regulation of Complex Networks, PLoS Comput. Biol., Volume 12 (2016) no. 8, pp. 1-36

[22] Ohno, Yasuo; Sasaki, Yoshitaka On the parity of poly-Euler numbers, Algebraic number theory and related topics 2010 (RIMS Kôkyûroku Bessatsu), Volume B32, Research Institute for Mathematical Sciences, 2012, pp. 271-278 | MR | Zbl

[23] Ohno, Yasuo; Sasaki, Yoshitaka On poly-Euler numbers, J. Aust. Math. Soc., Volume 103 (2017) no. 1, pp. 126-144 | DOI | MR | Zbl

[24] Ryser, Herbert J. Combinatorial properties of matrices of zeros and ones, Can. J. Math., Volume 9 (1957), pp. 371-377 | DOI | MR | Zbl

[25] Sasaki, Yoshitaka On generalized poly-Bernoulli numbers and related L-functions, J. Number Theory, Volume 132 (2012) no. 1, pp. 156-170 | DOI | MR | Zbl

[26] Sloane, Neil J. A. The on-line encyclopedia of integer sequences (Available at https://oeis.org)

[27] Stanley, Richard P. Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 1997, xii+325 pages (with a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original) | DOI | MR | Zbl

Cited by Sources: