In this article, we describe how to compute slopes of -adic -invariants of Hecke eigenforms of arbitrary weight and level by means of the Greenberg–Stevens formula. Our method is based on the work of Lauder and Vonk on computing the reverse characteristic series of the -operator on overconvergent modular forms. Using higher derivatives of this series, we construct a polynomial whose roots are precisely the -invariants appearing in the corresponding space of modular forms with fixed sign of the Atkin–Lehner involution at . In addition, we describe how to compute this polynomial efficiently. In the final section, we give computational evidence for relations between slopes of -invariants of different levels and weights for small primes .
Dans cet article, nous montrons comment calculer les pentes des invariants- -adiques de formes modulaires de niveaux et de poids arbitraires en appliquant la formule de Greenberg–Stevens. Notre méthode repose sur les travaux de Lauder et Vonk sur le calcul de la série caractéristique réciproque de l’opérateur sur les formes modulaires surconvergentes. En utilisant les dérivées supérieures de cette série, nous construisons un polynôme dont les racines sont exactement les invariants- apparaissant dans l’espace correspondant des formes modulaires de signe fixé pour l’action de l’involution d’Atkin–Lehner en . En outre, nous montrons comment calculer ce polynôme efficacement. Dans la dernière section, pour des petits nombres premiers , nous donnons des évidences numériques en faveur de l’existence des relations entre les pentes des invariants- de différents niveaux et poids.
Revised:
Accepted:
Published online:
Keywords: classical and $p$-adic modular forms
@article{JTNB_2019__31_3_727_0, author = {Anni, Samuele and B\"ockle, Gebhard and Gr\"af, Peter and Troya, \'Alvaro}, title = {Computing $\protect \mathcal{L}$-invariants via the {Greenberg{\textendash}Stevens} formula}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {727--746}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1106}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1106/} }
TY - JOUR AU - Anni, Samuele AU - Böckle, Gebhard AU - Gräf, Peter AU - Troya, Álvaro TI - Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 727 EP - 746 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1106/ DO - 10.5802/jtnb.1106 LA - en ID - JTNB_2019__31_3_727_0 ER -
%0 Journal Article %A Anni, Samuele %A Böckle, Gebhard %A Gräf, Peter %A Troya, Álvaro %T Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula %J Journal de théorie des nombres de Bordeaux %D 2019 %P 727-746 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1106/ %R 10.5802/jtnb.1106 %G en %F JTNB_2019__31_3_727_0
Anni, Samuele; Böckle, Gebhard; Gräf, Peter; Troya, Álvaro. Computing $\protect \mathcal{L}$-invariants via the Greenberg–Stevens formula. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 727-746. doi : 10.5802/jtnb.1106. http://www.numdam.org/articles/10.5802/jtnb.1106/
[1] Hecke operators on , Math. Ann., Volume 185 (1970), pp. 134-160 | DOI | Zbl
[2] Une preuve de la conjecture de Mahler–Manin, Invent. Math., Volume 124 (1996) no. 1-3, pp. 1-9 | DOI | MR | Zbl
[3] Eigenvarieties, families of Galois representations, -adic -functions (2010) (unpublished course notes)
[4] Critical -adic -functions, Invent. Math., Volume 189 (2012), pp. 1-60 | DOI | MR | Zbl
[5] Upper bounds for constant slope -adic families of modular forms, Sel. Math., New Ser., Volume 25 (2019) no. 4, 59, 24 pages | MR | Zbl
[6] Questions about slopes of modular forms, Automorphic forms (I) (Astérisque), Volume 298, Société Mathématique de France, 2005, pp. 1-15 | Numdam | Zbl
[7] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | MR | Zbl
[8] Quelques courbes de Hecke se plongent dans l’espace de Colmez, J. Number Theory, Volume 128 (2008) no. 8, pp. 2430-2449 | DOI | MR | Zbl
[9] Classical and overconvergent modular forms, Invent. Math., Volume 124 (1996) no. 1-3, pp. 215-241 | DOI | MR | Zbl
[10] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl
[11] Numerical experiments on families of -adic modular forms, Computational perspectives on number theory (Chicago, IL, 1995) (AMS/IP Studies in Advanced Mathematics), Volume 7, American Mathematical Society, 1995, pp. 143-158 | DOI | Zbl
[12] Invariants et dérivées de valeurs propres de Frobenius, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 13-28 | Numdam | Zbl
[13] On the characteristic power series of the operator, Ann. Inst. Fourier, Volume 43 (1993) no. 2, pp. 301-312 | DOI | Numdam | MR | Zbl
[14] A control theorem for -adic automorphic forms and Teitelbaum’s -invariant, Ramanujan J., Volume 50 (2019) no. 1, pp. 13-43 | DOI | MR | Zbl
[15] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | MR | Zbl
[16] Periods of modular -type abelian varieties and -adic integration, Exp. Math., Volume 27 (2018) no. 3, pp. 344-361 | DOI | Zbl
[17] Computations with classical and -adic modular forms, LMS J. Comput. Math., Volume 14 (2011), pp. 214-231 | DOI | MR | Zbl
[18] Refined dimensions of cusp forms, and equidistribution and bias of signs, J. Number Theory, Volume 188 (2018), pp. 1-17 | DOI | MR | Zbl
[19] On -adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986), pp. 1-48 | DOI | MR | Zbl
[20] Values of -adic -functions and a -adic Poisson kernel, Invent. Math., Volume 101 (1990) no. 2, pp. 395-410 | DOI | MR | Zbl
[21] Computing overconvergent forms for small primes, LMS J. Comput. Math., Volume 18 (2015), pp. 250-257 | DOI | MR | Zbl
Cited by Sources: