Let be the greatest value of covering radius over all well-rounded unimodular dimensional lattices. In 1972 A. C. Woods conjectured that . C. T. McMullen proved that the Woods conjecture implies the celebrated Minkowski’s conjecture in 2005. The Woods conjecture has been proved for . In 2016 Regev, Shapira and Weiss gave counterexamples for the Woods conjecture for . In this paper we give counterexamples to the Woods conjecture in dimensions . Then the unknown dimensions of the Woods conjecture are dimensions .
Soit le maximum des rayons de recouvrement des réseaux -dimensionnels unimodulaires possédants vecteurs minimaux indépendants. En 1972, A. C. Woods a conjecturé que . En 2005, C. T. McMullen a démontré que la conjecture de Woods implique la célèbre conjecture de Minkowski. La conjecture de Woods est prouvée pour . En 2016, Regev, Shapira et Weiss ont trouvé des contre-exemples à la conjecture de Woods pour . Dans cet article, nous donnons des contre-exemples à la conjecture de Woods pour . La question reste donc ouverte pour les dimensions .
Revised:
Accepted:
Published online:
Keywords: Lattice, Woods conjecture, Minkowski conjecture
@article{JTNB_2019__31_3_723_0, author = {Chen, Hao and Xu, Liqing}, title = {Counterexamples to the {Woods} {Conjecture} in dimensions $d \ge 24$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {723--726}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1105}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1105/} }
TY - JOUR AU - Chen, Hao AU - Xu, Liqing TI - Counterexamples to the Woods Conjecture in dimensions $d \ge 24$ JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 723 EP - 726 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1105/ DO - 10.5802/jtnb.1105 LA - en ID - JTNB_2019__31_3_723_0 ER -
%0 Journal Article %A Chen, Hao %A Xu, Liqing %T Counterexamples to the Woods Conjecture in dimensions $d \ge 24$ %J Journal de théorie des nombres de Bordeaux %D 2019 %P 723-726 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1105/ %R 10.5802/jtnb.1105 %G en %F JTNB_2019__31_3_723_0
Chen, Hao; Xu, Liqing. Counterexamples to the Woods Conjecture in dimensions $d \ge 24$. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 723-726. doi : 10.5802/jtnb.1105. http://www.numdam.org/articles/10.5802/jtnb.1105/
[1] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1988 | MR | Zbl
[2] Geometry of numbers, North-Holland Mathematical Library, 37, North-Holland, 1987 | MR | Zbl
[3] On conjectures of Minkowski and Woods for (2014) (https://arxiv.org/abs/1410.5743)
[4] Minkowski’s conjecture, well-rounded lattices and topological dimensions, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 711-734 | DOI | MR | Zbl
[5] Counterexamples to a conjecture of Woods, Duke Math. J., Volume 66 (2017) no. 13, pp. 2443-2446 | DOI | MR | Zbl
[6] A volume estimate for the set of stable lattices, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 11, pp. 875-879 | DOI | MR | Zbl
[7] Stable lattices and the diagonal group, J. Eur. Math. Soc., Volume 18 (2016) no. 8, pp. 1753-1767 | DOI | MR | Zbl
[8] Covering six-space with spheres, J. Number Theory, Volume 4 (1972), pp. 157-180 | DOI | MR | Zbl
Cited by Sources: