Counterexamples to the Woods Conjecture in dimensions d24
Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 723-726.

Let N d be the greatest value of covering radius over all well-rounded unimodular d dimensional lattices. In 1972 A. C. Woods conjectured that N d d 2. C. T. McMullen proved that the Woods conjecture implies the celebrated Minkowski’s conjecture in 2005. The Woods conjecture has been proved for d9. In 2016 Regev, Shapira and Weiss gave counterexamples for the Woods conjecture for d30. In this paper we give counterexamples to the Woods conjecture in dimensions d24. Then the unknown dimensions of the Woods conjecture are 14 dimensions 10d23.

Soit N d le maximum des rayons de recouvrement des réseaux d-dimensionnels unimodulaires possédants d vecteurs minimaux indépendants. En 1972, A. C. Woods a conjecturé que N d d 2. En 2005, C. T. McMullen a démontré que la conjecture de Woods implique la célèbre conjecture de Minkowski. La conjecture de Woods est prouvée pour d9. En 2016, Regev, Shapira et Weiss ont trouvé des contre-exemples à la conjecture de Woods pour d30. Dans cet article, nous donnons des contre-exemples à la conjecture de Woods pour d24. La question reste donc ouverte pour les dimensions 10d23.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1105
Classification: 11H31, 11H99
Keywords: Lattice, Woods conjecture, Minkowski conjecture
Chen, Hao 1; Xu, Liqing 1

1 The College of Information Science and Technology/Cyber Security, Jinan University Guangzhou, Guangdong Province 510632, China
@article{JTNB_2019__31_3_723_0,
     author = {Chen, Hao and Xu, Liqing},
     title = {Counterexamples to the {Woods} {Conjecture} in dimensions $d \ge 24$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {723--726},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {3},
     year = {2019},
     doi = {10.5802/jtnb.1105},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1105/}
}
TY  - JOUR
AU  - Chen, Hao
AU  - Xu, Liqing
TI  - Counterexamples to the Woods Conjecture in dimensions $d \ge 24$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 723
EP  - 726
VL  - 31
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1105/
DO  - 10.5802/jtnb.1105
LA  - en
ID  - JTNB_2019__31_3_723_0
ER  - 
%0 Journal Article
%A Chen, Hao
%A Xu, Liqing
%T Counterexamples to the Woods Conjecture in dimensions $d \ge 24$
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 723-726
%V 31
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1105/
%R 10.5802/jtnb.1105
%G en
%F JTNB_2019__31_3_723_0
Chen, Hao; Xu, Liqing. Counterexamples to the Woods Conjecture in dimensions $d \ge 24$. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 723-726. doi : 10.5802/jtnb.1105. http://www.numdam.org/articles/10.5802/jtnb.1105/

[1] Conway, John H.; Sloane, Neil J. A Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1988 | MR | Zbl

[2] Gruber, Peter M.; Lekkerkerker, Cornelis G. Geometry of numbers, North-Holland Mathematical Library, 37, North-Holland, 1987 | MR | Zbl

[3] Kathuria, Leetika; Raka, Madhu On conjectures of Minkowski and Woods for n=9 (2014) (https://arxiv.org/abs/1410.5743)

[4] McMullen, Curtis T. Minkowski’s conjecture, well-rounded lattices and topological dimensions, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 711-734 | DOI | MR | Zbl

[5] Regev, Oded; Shapira, Uri; Weiss, Barak Counterexamples to a conjecture of Woods, Duke Math. J., Volume 66 (2017) no. 13, pp. 2443-2446 | DOI | MR | Zbl

[6] Shapira, Uri; Weiss, Barak A volume estimate for the set of stable lattices, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 11, pp. 875-879 | DOI | MR | Zbl

[7] Shapira, Uri; Weiss, Barak Stable lattices and the diagonal group, J. Eur. Math. Soc., Volume 18 (2016) no. 8, pp. 1753-1767 | DOI | MR | Zbl

[8] Woods, Alan C. Covering six-space with spheres, J. Number Theory, Volume 4 (1972), pp. 157-180 | DOI | MR | Zbl

Cited by Sources: