Mirror symmetry for extended affine Weyl groups
[Symétrie miroir pour les groupes de Weyl affines étendus]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 907-957.

Nous donnons une construction de symétrie miroir, de façon uniforme et par des méthodes de théorie de Lie, pour les variétés de Frobenius définies par Dubrovin-Zhang sur les orbites des groupes de Weyl affines étendus, y compris les types de Dynkin exceptionnels. Le modèle miroir est donné par un superpotentiel de Landau-Ginzburg construit à partir d’une dégénérescence convenable des courbes spectrales de la chaîne de Toda affine relativiste pour le groupe de Lie-Poisson affine correspondant. Nous fournissons également plusieurs applications de ce théorème miroir. Celles-ci incluent des expressions explicites pour les coordonnées plates pour la métrique de Saito et le prépotentiel de Frobenius en tout type de Dynkin ; le calcul du degré topologique de l’application de Lyashko-Looijenga pour certaines strates des espaces d’Hurwitz en genre supérieur ; et la construction de hiérarchies hydrodynamiques bi-hamiltoniennes (à la fois dans le formalisme de Lax-Sato et hamiltonien) qui donnent des généralisations de la limite de dispersion nulle de la hiérarchie de Toda étendue.

We give a uniform, Lie-theoretic mirror symmetry construction for the Frobenius manifolds defined by Dubrovin–Zhang in [21] on the orbit spaces of extended affine Weyl groups, including exceptional Dynkin types. The B-model mirror is given by a one-dimensional Landau–Ginzburg superpotential constructed from a suitable degeneration of the family of spectral curves of the affine relativistic Toda chain for the corresponding affine Poisson–Lie group. As applications of our mirror theorem we give closed-form expressions for the flat coordinates of the Saito metric and the Frobenius prepotentials in all Dynkin types, compute the topological degree of the Lyashko–Looijenga mapping for certain higher genus Hurwitz space strata, and construct hydrodynamic bihamiltonian hierarchies (in both Lax–Sato and Hamiltonian form) that are root-theoretic generalisations of the long-wave limit of the extended Toda hierarchy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.197
Classification : 53D45, 14B07, 20H15
Keywords: Frobenius manifolds, mirror symmetry, integrable systems
Mot clés : Variétés de Frobenius, symétrie miroir, systèmes intégrables
Brini, Andrea 1 ; van Gemst, Karoline 2

1 School of Mathematics and Statistics, University of Sheffield S11 9DW, Sheffield, United Kingdom On leave from CNRS, DR 13, Montpellier, France
2 School of Mathematics and Statistics, University of Sheffield S11 9DW, Sheffield, United Kingdom
@article{JEP_2022__9__907_0,
     author = {Brini, Andrea and van Gemst, Karoline},
     title = {Mirror symmetry for extended affine {Weyl} groups},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {907--957},
     publisher = {Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.197},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.197/}
}
TY  - JOUR
AU  - Brini, Andrea
AU  - van Gemst, Karoline
TI  - Mirror symmetry for extended affine Weyl groups
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 907
EP  - 957
VL  - 9
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.197/
DO  - 10.5802/jep.197
LA  - en
ID  - JEP_2022__9__907_0
ER  - 
%0 Journal Article
%A Brini, Andrea
%A van Gemst, Karoline
%T Mirror symmetry for extended affine Weyl groups
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 907-957
%V 9
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.197/
%R 10.5802/jep.197
%G en
%F JEP_2022__9__907_0
Brini, Andrea; van Gemst, Karoline. Mirror symmetry for extended affine Weyl groups. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 907-957. doi : 10.5802/jep.197. http://www.numdam.org/articles/10.5802/jep.197/

[1] Antoniou, G.; Feigin, M.; Strachan, I. A. B. The Saito determinant for Coxeter discriminant strata, 2020 | arXiv

[2] Arnold, V. I. Topological classification of complex trigonometric polynomials and the combinatorics of graphs with an identical number of vertices and edges, Funktsional. Anal. i Prilozhen., Volume 30 (1996) no. 1, p. 1-17, 96 | DOI | MR | Zbl

[3] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Vol. I, Monographs in Math., 82, Birkhäuser Boston, Inc., Boston, MA, 1985 | DOI

[4] Borot, G.; Brini, A. Chern–Simons theory on spherical Seifert manifolds, topological strings and integrable systems, Adv. Theo. Math. Phys., Volume 22 (2018) no. 2, pp. 305-394 | DOI | MR | Zbl

[5] Bouchard, V.; Marino, M. Hurwitz numbers, matrix models and enumerative geometry, From Hodge theory to integrability and TQFT tt*-geometry (Proc. Sympos. Pure Math.), Volume 78, American Mathematical Society, Providence, RI, 2008, pp. 263-283 | DOI | MR | Zbl

[6] Brini, A. E 8 spectral curves, Proc. London Math. Soc. (3), Volume 121 (2020) no. 4, pp. 954-1032 | DOI | MR

[7] Brini, A. Exterior powers of the adjoint representation and the Weyl ring of E 8 , J. Algebra, Volume 551 (2020), pp. 301-341 | DOI | MR

[8] Brini, A.; Cavalieri, R.; Ross, D. Crepant resolutions and open strings, J. reine angew. Math., Volume 755 (2019), pp. 191-245 | DOI | MR | Zbl

[9] Brini, A.; Osuga, K. Five-dimensional gauge theories and the local B-model, Lett. Math. Phys., Volume 112 (2022), 44, 48 pages | DOI | MR

[10] Caporaso, N.; Griguolo, L.; Marino, M.; Pasquetti, S.; Seminara, D. Phase transitions, double-scaling limit, and topological strings, Phys. Rev. D, Volume 75 (2007) no. 4, 046004, 24 pages | DOI | MR

[11] Carlet, G. The extended bigraded Toda hierarchy, J. Phys. A, Volume 39 (2006) no. 30, pp. 9411-9435 | DOI | MR | Zbl

[12] Cheng, J.; Milanov, T. The extended D-Toda hierarchy, Selecta Math. (N.S.), Volume 27 (2021) no. 2, 24, 85 pages | DOI | MR | Zbl

[13] Crescimanno, M. J.; Taylor, W. Large N phases of chiral QCD in two-dimensions, Nuclear Phys. B, Volume 437 (1995), pp. 3-24 | DOI

[14] Dubrovin, B. Hamiltonian formalism of Whitham type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys., Volume 145 (1992), pp. 195-207 | DOI | MR | Zbl

[15] Dubrovin, B. Integrable systems in topological field theory, Nuclear Phys. B, Volume 379 (1992) no. 3, pp. 627-689 | DOI | MR

[16] Dubrovin, B. Geometry of 2D topological field theory, Integrable systems and quantum groups (Francaviglia, M.; Greco, S., eds.) (Lect. Notes in Math.), Volume 1620, Springer-Verlag, Berlin, 1996, pp. 120-348 | DOI

[17] Dubrovin, B. Differential geometry of the space of orbits of a Coxeter group, Integrable systems (Surv. Differ. Geom.), Volume 4, Int. Press, Boston, MA, 1998, pp. 181-211 | DOI | MR | Zbl

[18] Dubrovin, B. Painlevé transcendents and two-dimensional topological field theory, The Painlevé property (CRM Ser. Math. Phys.), Springer, New York, 1999, pp. 287-412 | DOI | Zbl

[19] Dubrovin, B. On almost duality for Frobenius manifolds, Geometry, topology, and mathematical physics (Amer. Math. Soc. Transl. Ser. 2), Volume 212, American Mathematical Society, Providence, RI, 2004, pp. 75-132 | MR | Zbl

[20] Dubrovin, B.; Strachan, I.; Zhang, Y.; Zuo, D. Extended affine Weyl groups of BCD-type: Their Frobenius manifolds and Landau–Ginzburg superpotentials, Adv. Math., Volume 351 (2019), pp. 897-946 | DOI | MR | Zbl

[21] Dubrovin, B.; Zhang, Y. Extended affine Weyl groups and Frobenius manifolds, Compositio Math., Volume 111 (1998) no. 2, pp. 167-219 | DOI | MR | Zbl

[22] Dunin-Barkowski, P.; Orantin, N.; Shadrin, S.; Spitz, L. Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys., Volume 328 (2014), pp. 669-700 | DOI | MR | Zbl

[23] Ekedahl, T.; Lando, S.; Shapiro, M.; Vainshtein, A. Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., Volume 146 (2001), pp. 297-327 | DOI | MR | Zbl

[24] Fock, V. V.; Marshakov, A. Loop groups, clusters, dimers and integrable systems, Geometry and quantization of moduli spaces (Adv. Courses Math. CRM Barcelona), Birkhäuser/Springer, Cham, 2016, pp. 1-66 | Zbl

[25] Fulton, W. Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), Volume 90 (1969), pp. 542-575 | DOI | MR | Zbl

[26] Fulton, W.; Harris, J. Representation theory, Graduate Texts in Math., 129, Springer-Verlag, New York, 1991 | DOI

[27] Goulden, I. P.; Jackson, D. M. The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European J. Combin., Volume 13 (1992) no. 5, pp. 357-365 | DOI | MR | Zbl

[28] Goulden, I. P.; Jackson, D. M.; Vainshtein, A. The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb., Volume 4 (2000) no. 1, pp. 27-46 | DOI | MR | Zbl

[29] Goupil, A.; Schaeffer, G. Factoring n-cycles and counting maps of given genus, European J. Combin., Volume 19 (1998) no. 7, pp. 819-834 | DOI | MR | Zbl

[30] Ito, K.; Yang, S-K. Flat coordinates, topological Landau-Ginzburg models and the Seiberg-Witten period integrals, Phys. Lett. B, Volume 415 (1997), pp. 45-53 | DOI | MR

[31] Krichever, I. M. The tau function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math., Volume 47 (1994), p. 437 | DOI | Zbl

[32] Lando, S. K. Ramified coverings of the two-dimensional sphere and intersection theory in spaces of meromorphic functions on algebraic curves, Uspehi Mat. Nauk, Volume 57 (2002) no. 3(345), pp. 29-98 | DOI | MR

[33] Lando, S. K.; Zvonkine, D. On multiplicities of the Lyashko–Looijenga mapping on strata of the discriminant, Funct. Anal. Appl., Volume 33 (1999) no. 3, pp. 178-188 | DOI | MR | Zbl

[34] Lando, S. K.; Zvonkine, D. Counting ramified converings and intersection theory on spaces of rational functions. I. Cohomology of Hurwitz spaces, Moscow Math. J., Volume 7 (2007) no. 1, pp. 85-107 | DOI | MR | Zbl

[35] Lerche, W.; Warner, N. P. Exceptional SW geometry from ALE fibrations, Phys. Lett. B, Volume 423 (1998) no. 1-2, pp. 79-86 | DOI | MR

[36] Looijenga, E. The complement of the bifurcation variety of a simple singularity, Invent. Math., Volume 23 (1974), pp. 105-116 | DOI | MR | Zbl

[37] Lyashko, O. V. The geometry of bifurcation diagrams, Uspehi Mat. Nauk, Volume 34 (1979) no. 3(207), pp. 205-206 | Zbl

[38] McDaniel, A.; Smolinsky, L. A Lie-theoretic Galois theory for the spectral curves of an integrable system. I, Comm. Math. Phys., Volume 149 (1992) no. 1, pp. 127-148 http://projecteuclid.org/euclid.cmp/1104251141 | DOI | MR | Zbl

[39] McDaniel, A.; Smolinsky, L. A Lie-theoretic Galois theory for the spectral curves of an integrable system. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 2, pp. 713-746 | DOI | MR | Zbl

[40] Milanov, T.; Shen, Y.; Tseng, H-H. Gromov–Witten theory of Fano orbifold curves and ADE-Toda Hierarchies, Geom. Topol., Volume 20 (2016) no. 4, pp. 2135-2218 | DOI | Zbl

[41] Nekrasov, N. Five dimensional gauge theories and relativistic integrable systems, Nuclear Phys. B, Volume 531 (1998) no. 1-3, pp. 323-344 | DOI | MR | Zbl

[42] Norbury, P.; Scott, N. Gromov–Witten invariants of 1 and Eynard–Orantin invariants, Geom. Topol., Volume 18 (2014) no. 4, pp. 1865-1910 | DOI | MR | Zbl

[43] Panov, D.; Zvonkine, D. Counting meromorphic functions with critical points of large multiplicities, J. Math. Sci., Volume 126 (2005) no. 2, pp. 1095-1110 | DOI | Zbl

[44] Rossi, P. Gromov–Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations, Math. Ann., Volume 348 (2010) no. 2, pp. 265-287 | DOI | MR | Zbl

[45] Szablikowski, B. M.; Blaszak, M. Dispersionful analog of the Whitham hierarchy, J. Math. Phys., Volume 49 (2008) no. 8, p. 082701, 20 | DOI | MR | Zbl

[46] Williams, H. Double Bruhat cells in Kac–Moody groups and integrable systems, Lett. Math. Phys., Volume 103 (2013), pp. 389-419 | DOI | MR | Zbl

Cité par Sources :