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MIRROR SYMMETRY FOR

EXTENDED AFFINE WEYL GROUPS

by Andrea Brini & Karoline van Gemst

Abstract. —We give a uniform, Lie-theoretic mirror symmetry construction for the Frobenius
manifolds defined by Dubrovin–Zhang in [21] on the orbit spaces of extended affine Weyl groups,
including exceptional Dynkin types. The B-model mirror is given by a one-dimensional Landau–
Ginzburg superpotential constructed from a suitable degeneration of the family of spectral
curves of the affine relativistic Toda chain for the corresponding affine Poisson–Lie group. As
applications of our mirror theorem we give closed-form expressions for the flat coordinates of
the Saito metric and the Frobenius prepotentials in all Dynkin types, compute the topological
degree of the Lyashko–Looijenga mapping for certain higher genus Hurwitz space strata, and
construct hydrodynamic bihamiltonian hierarchies (in both Lax–Sato and Hamiltonian form)
that are root-theoretic generalisations of the long-wave limit of the extended Toda hierarchy.

Résumé (Symétrie miroir pour les groupes de Weyl affines étendus). — Nous donnons une
construction de symétrie miroir, de façon uniforme et par des méthodes de théorie de Lie,
pour les variétés de Frobenius définies par Dubrovin-Zhang sur les orbites des groupes de Weyl
affines étendus, y compris les types de Dynkin exceptionnels. Le modèle miroir est donné par
un superpotentiel de Landau-Ginzburg construit à partir d’une dégénérescence convenable des
courbes spectrales de la chaîne de Toda affine relativiste pour le groupe de Lie-Poisson af-
fine correspondant. Nous fournissons également plusieurs applications de ce théorème miroir.
Celles-ci incluent des expressions explicites pour les coordonnées plates pour la métrique de
Saito et le prépotentiel de Frobenius en tout type de Dynkin ; le calcul du degré topologique
de l’application de Lyashko-Looijenga pour certaines strates des espaces d’Hurwitz en genre
supérieur ; et la construction de hiérarchies hydrodynamiques bi-hamiltoniennes (à la fois dans
le formalisme de Lax-Sato et hamiltonien) qui donnent des généralisations de la limite de dis-
persion nulle de la hiérarchie de Toda étendue.
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1. Introduction

Frobenius manifolds, introduced by B. Dubrovin in [16] as a coordinate free formu-
lation of the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations of 2D topolog-
ical field theory, have sat for a good quarter of a century at a key point of confluence
of algebraic geometry, singularity theory, quantum field theory, and the theory of
integrable systems. In algebraic geometry, they serve as a model for the quantum
co-homology (genus zero Gromov–Witten theory) of smooth projective varieties; in
singularity theory, they encode the existence of pencils of flat pairings on the base of
the mini-versal deformations of hypersurface singularities; in physics, they codify the
associativity of the chiral ring of topologically twisted N = (2, 2) supersymmetric field
theories in two dimensions; and in the theory of integrable hierarchies, they provide a
loop-space formulation of hydrodynamic bihamiltonian integrable hierarchies in 1+1
dimensions.

On top of the physics-inspired examples of Frobenius manifolds coming from
Witten’s topological A- and B-twists of 2D-theories with four supercharges, an
interesting source of Frobenius manifolds is well-known to arise in Lie theory. Let gR
be a simple complex Lie algebra associated to an irreducible root system R, and
write hR and g

(1)
R for, respectively, its Cartan subalgebra and the associated un-

twisted affine Lie algebra. In a celebrated result [17], Dubrovin constructed a class
of semi-simple polynomial Frobenius manifolds on the space of regular orbits of the
reflection representation of Weyl(gR) (and in fact, on the orbit spaces of the defining
representation of any Coxeter group). A remarkable extension of this was provided
by Dubrovin and Zhang [21], who defined a Frobenius manifold structure MDZ

R on
quotients of hR×C by a suitable semi-direct product Weyl(g

(1)
R )nZ. They furthermore

provided a mirror symmetry construction for Dynkin type A, gAN−1
= slN (C), in

terms of Laurent-polynomial one-dimensional Landau–Ginzburg models, which was
later generalised to classical Lie algebras in [20]. A question raised by [21, 20] was
whether a similar uniform mirror symmetry construction for all Dynkin types could
be established, including exceptional Lie algebras.

This paper gives a constructive Lie-theoretic answer to this question, which is
furthermore entirely explicit, and provides closed-form expressions for the flat coor-
dinates of the analogue of the Saito–Sekiguchi–Yano metric and for the Frobenius
prepotential. Our mirror theorem has simultaneous implications for singularity the-
ory, integrable systems, the Gromov–Witten theory of Fano orbicurves, and Seiberg–
Witten theory, some of which are explored here.

1.1. Main results

1.1.1. Mirror symmetry for Dubrovin–Zhang Frobenius manifolds. — Our main result
is the following general mirror theorem for Dubrovin–Zhang Frobenius manifolds (see
Theorem 3.6 for the complete statement, and Table 1.1 for details of the notation
employed). Let Hg,n be the Hurwitz space of isomorphism classes [λ : Cg → P1] of
covers of the complex line by a genus g curve Cg with ramification profile at infinity
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Mirror symmetry for extended affine Weyl groups 909

described by n ∈ (Z>0)`(n), `(n) > 1. Fixing a suitable meromorphic function µ on
Hg,n induces, as a particular case of a classical construction of Dubrovin [14, 16],
a semi-simple Frobenius manifold structure H

[µ]
g,n on Hg,n.

Theorem 1.1 (= Theorem 3.6). — For any simple Dynkin type R there exists a highest
weight ω for the corresponding simple Lie algebra g, pairs of integers (gω, nω), and
an explicit embedding ιω : MDZ

R ↪→ H
[µ]
gω,nω , such that ιω is a Frobenius manifold

isomorphism onto its image MLG
ω := ιω(MDZ

R ).

In other words, ιω identifies the Frobenius manifold MDZ
R with a distinguished

stratum MLG
ω of a Hurwitz space, which is an affine-linear subspace of the Frobe-

nius manifold H
[µ]
gω,nω in its natural set of flat coordinates. The datum of the covering

map on Hgω,nω defines a one-dimensional B-model superpotential for MDZ
R in terms

of a family of (trigonometric) meromorphic functions MLG
ω , whose Landau–Ginzburg

residue formulas determine the Dubrovin–Zhang flat pencil of metrics and the Frobe-
nius product structure on TMDZ

R .
Theorem 1.1 is proved in two main steps. Fixing ω a dominant weight in a minimal

non-trivial Weyl orbit, we first associate to MDZ
R a family of spectral curves specified

by the vanishing of the characteristic polynomial in the representation ρω for a pencil
of group elements g(λ) ∈ G := exp g. The construction of the family hinges on de-
termining all character relations of the form χ∧kρω = pωk (χρ1 , . . . , χρ`R ) in the Weyl
character ring of G, where ρi is the ith fundamental representation of G, and `R is
the rank of R. The resulting family sweeps a submanifold of a Hurwitz space Hgω,nω :
the second step consists in establishing that this is a Frobenius submanifold of the
Frobenius manifold H

[µ]
gω,nω satisfying the defining properties of MDZ

R .
Our construction is motivated by a conjectural relation of the almost-dual Frobe-

nius manifold [19] for R of type ADE with the orbifold quantum co-homology of the
associated simple surface singularity, as proposed in [8, 6], which is in turn described
by a degeneration of a family of spectral curves for the relativistic Toda chain as-
sociated to (a co-extension of) the corresponding affine Poisson–Lie group of type
ADE [24, 46]. The one-parameter family of group elements g(λ) in our construction is
given by the Lax operator for the chain, where λ is the spectral parameter: the rela-
tion to the associated Dubrovin–Zhang Frobenius manifold of type ADE is suggested
by analogous results for the simple Lie algebra case due to Lerche–Warner, Ito–Yang,
and Dubrovin [35, 30, 19].

For the minimal choices, the target Hurwitz space Hgω,nω is a space of rational
functions (gω = 0) for type R = A`, B`, C`, D` and G2, and it is a space of mero-
morphic functions on higher genus curves in the other exceptional types. Note that
different choices of ω induce different families of spectral curves, and therefore different
embeddings ιω : MDZ

R ↪→ H
[µ]
gω,mω inside a parent Hurwitz space. Whilst we prove The-

orem 1.1 for dominant weights ω in a minimal non-trivial Weyl orbit, we also provide
verifications that different non-minimal choices of ω indeed give rise to isomorphic
Frobenius manifolds.

J.É.P. — M., 2022, tome 9



910 A. Brini & K. van Gemst

1.1.2. Application I: Frobenius prepotentials. — The original Dubrovin–Zhang con-
struction establishes the existence of a Frobenius manifold structure on MDZ

R by
abstractly constructing a flat pencil of metrics γ∗ + λη∗ on T ∗MDZ

R , where γ∗ arises
from an extension of the Killing pairing to hR ⊕ C, without reference to an actual
system of flat coordinates for η∗ (the analogue of the Saito–Sekiguchi–Yano metric
for finite reflection groups). From Theorem 1.1, the metric η∗ and Frobenius product
on the base of the family of spectral curves can then be computed using Landau–
Ginzburg residue formulas for the superpotential: the associativity of the Frobenius
product reduces the analysis of the pole structure of the Landau–Ginzburg residues
to the sole poles of the superpotential, giving closed-form expressions for the flat
coordinates of η∗ and its prepotential. We then obtain the following

Theorem 1.2 (= Lemma 4.1 and Examples in Section 4.1). — For all R, we provide
flat coordinates for the Saito metric of the Dubrovin–Zhang pencil and closed-form
prepotentials for MDZ

R .

Our expressions recover results of [21, 20] for classical Lie algebras; the statements
for exceptional Dynkin types are new. Theorem 1.1 is key to the determination of
the prepotential: the Landau–Ginzburg calculation reduces the computation of flat
coordinates for η∗ and a distinguished subset of structure constants to straightforward
residue calculations on the spectral curves, from which the entire product structure
on the Frobenius manifold can be recovered using WDVV equations.

1.1.3. Application II: Lyashko–Looijenga multiplicities of meromorphic functions

The enumeration of isomorphism classes of covers of S2 with prescribed ramifica-
tion over a point is a classical problem in topology and enumerative combinatorics,
going back to Hurwitz’ formula for the case in which the covering surface is also a
Riemann sphere. The result of the enumeration for a cover of arbitrary geometric
genus g and branching profile n = (n0, . . . , nm) is the Hurwitz number hg,n, whose
significance straddles several domains in enumerative combinatorics [29, 28], repre-
sentation theory of the symmetric group [27], moduli of curves [23], and mathematical
physics [13, 5, 10]. It was first noticed by Arnold [2] that when the branching profile
has maximal degeneration (i.e., for polynomial maps f : P1 → P1) this problem is
intimately related to considering the topology of the complement of the discriminant
for the base of the type A` mini-versal deformation, and in particular to the degree of
the Lyashko–Looijenga mapping [37, 36] LL : C[µ] → C[µ], which assigns to a poly-
nomial λ(µ) the unordered set of its critical values LL(λ)(µ) =

∏
λ′(z̃)=0(µ − f(z̃)).

This is a finite polynomial map [2, 36], inducing a stratification of C[µ] according to
the degeneracy of the critical values of λ. The computation of the topological degree
of this mapping on a given stratum, enumerating the number of polynomials shar-
ing the same critical values counted with multiplicity, can usually be translated into
a combinatorial problem enumerating some class of embedded graphs. This connec-
tion was used by Looijenga [36] to reprove Cayley’s formula for the enumeration of
marked trees (corresponding to the co-dimension zero stratum), and by Arnold [2]
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to encompass the case of Laurent polynomials (see also [33, 34] for generalisations to
rational functions and discriminant strata). The extension of this combinatorial ap-
proach to arbitrary strata at higher genus, involving enumerations of suitable coloured
oriented graphs (k-constellations), appears unwieldy [43]. However, when λ(µ) is the
Landau–Ginzburg superpotential of a semi-simple, conformal Frobenius manifold, the
graded structure of the latter can be used to determine the Lyashko–Looijenga multi-
plicity of λ(µ) by a direct application of the quasi-homogeneous Bézout theorem [3],
with no combinatorics involved. In particular Theorem 1.1 has the following immedi-
ate consequence.

Theorem 1.3 (= Corollary 5.2). — For all R we compute the Lyashko–Looijenga mul-
tiplicity of the stratum ιω(MDZ

R ) = MLG
ω ⊂ H

[µ]
gω,nω .

This includes, in particular, the higher genus Hurwitz spaces appearing for types
R = En and F4 (see Table 5.1).

1.1.4. Application III: the dispersionless extended type-RToda hierarchy. — The datum
of a semi-simple conformal Frobenius manifold is equivalent to the existence of a
τ -symmetric quasi-linear integrable hierarchy, which is bihamiltonian with respect
to a Dubrovin–Novikov hydrodynamic Poisson pencil. Having a description of the
Frobenius manifold in terms of a closed-form prepotential allows to give an explicit
presentation of the hierarchy in terms of an infinite set of commuting 1+1 PDEs in
normal coordinates. The loop-space version of Theorem 1.2 is then the following

Theorem 1.4 (= Proposition 5.3). — For all R, we construct a bihamiltonian dis-
persionless hierarchy on the loop space LMDZ

R in Hamiltonian form for the canonical
Poisson pencil associated to MDZ

R .

For type An this integrable hierarchy is the zero-dispersion limit of Carlet’s ex-
tended bigraded Toda hierarchy [11], and for type Dn it is the long-wave limit of the
Cheng–Milanov extended D-type hierarchy [12]. For simply-laced R, we expect that
the principal hierarchies of Theorem 1.4 should coincide with the dispersionless limit
of the Hirota integrable hierarchies constructed by Milanov–Shen–Tseng in [40]. The
non-simply-laced cases are, to the best of our knowledge, new examples of hydrody-
namic integrable hierarchies: our construction of the Landau–Ginzburg superpotential
is highly suggestive that these should be obtained as symmetry reductions of the hi-
erarchies in [40] by the usual folding procedure of the Dynkin diagram. Aside from
laying the foundation for determining the prepotential of MDZ

R , Theorem 1.1 also pro-
vides a dispersionless Lax formulation for the hierarchy as an explicit reduction of
Krichever’s genus-gω, `(nω)-pointed universal Whitham hierarchy.

1.2. Further applications. — We also highlight three further applications of The-
orem 1.1, which are the subject of ongoing investigation and whose details will be
provided in three separate publications.

J.É.P. — M., 2022, tome 9



912 A. Brini & K. van Gemst

1.2.1. The orbifold Norbury–Scott conjecture. — When R = A1, the Frobenius mani-
fold MDZ

R famously coincides with the quantum cohomology QH(P1,C) of the complex
projective line. In [42], the authors propose a higher genus version of this statement
and conjecture that the Chekhov–Eynard–Orantin topological recursion applied to
the Landau–Ginzburg superpotential of P1 computes the n-point, genus-g Gromov–
Witten invariants of P1 with descendant insertions of the Kähler class (the “station-
ary” invariants) in terms of explicit residues on the associated spectral curve (see [22]
for a proof). It was shown in [44] that for type R = A`, D` and E` the Dubrovin–
Zhang Frobenius manifolds MDZ

R are isomorphic to the orbifold quantum cohomology
of the Fano orbicurves CR = [C?\C2/ΓR], where ΓR < SU(2), |ΓR| <∞ is the McKay
group of type R. In particular,

CR '


P(1, `), R = A`,

P2,2,`−2, R = D`,

P2,3,`−3 R = E`.

The construction of the LG superpotentials of Theorem 1.1 now associates a family
of mirror spectral curves to the quantum cohomology of these orbifolds. As anticipated
in [6], it is natural to conjecture that the Norbury–Scott theorem receives an orbifold
generalisation through Theorem 1.1, whereby higher genus stationary Gromov–Witten
invariants of CR can be computed by residue calculus on the respective type R spectral
curve mirrors. The investigation of the correct phrasing for the topological recursion
is ongoing.

1.2.2. Seiberg–Witten theory. — For the case of polynomial Frobenius manifolds with
R = A`, D` or E`, it was noted by a number of authors [35, 30, 19] that the odd pe-
riods of the Frobenius manifold (in the language of [19]) give the quantum periods
of the Seiberg–Witten family of curves dual to N = 2 pure super Yang–Mills theory
on R4 with gauge group given by the compact real form of exp(g). In [41], Nekrasov
reformulated the Seiberg–Witten study of N = 2, d = 4 gauge theories in the con-
text of five-dimensional N = 1 gauge theories compactified on a circle, by viewing
the five-dimensional theory on R4 × S1 with gauge group G as, effectively, a four-
dimensional theory with gauge group the extended loop group Ĝ. In this context
the classical Coulomb vacua are parametrised by orbits of the associated extended
affine Weyl group. It is only natural to conjecture that the construction of odd pe-
riods and Picard–Fuchs system for four dimensional Seiberg–Witten theory from the
polynomial Frobenius manifolds can be lifted to provide solutions of five-dimensional
Seiberg–Witten theory using their Dubrovin–Zhang, extended affine counterpart; this
can indeed be explicitly checked for simply-laced cases [9]. Considerations about fold-
ing in five dimensions also allow to treat non-simply laced Lie groups, which points
to the existence of a new class of Frobenius manifolds having as monodromy group
an extension of the twisted affine Weyl group.

J.É.P. — M., 2022, tome 9
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1.2.3. Saito determinants on discriminant strata. — In [1], the authors consider
semi-simple Frobenius manifolds embedded as discriminant strata on the Dubrovin–
Hertling polynomial Frobenius structures on the orbits of the reflection representation
of Coxeter groups. In particular, they use the Landau–Ginzburg mirror superpoten-
tials to establish structural results on the determinant of the restriction of the Saito
metrics to arbitrary strata. A specific question asked by [1] is how much of that story
can be lifted to the study of the Dubrovin–Zhang Frobenius manifolds on extended
affine Weyl group orbits. The Landau–Ginzburg presentation of Theorem 1.1 unlocks
the power to employ the same successful methodology in the affine setting as well.

R An irreducible root system
`R The rank of R
gR The complex simple Lie algebra with root system R

GR The simply connected complex simple Lie group exp(gR)

hR (resp. TR) The Cartan subalgebra of gR (resp. Cartan torus of GR)
g (resp. h) A regular element of GR (resp. hR)

WR/ŴR/W̃R

The Weyl/affine Weyl/extended affine Weyl group of Dynkin
type R

{α1, . . . , α`R} The set of simple roots of R
{ω1, . . . , ω`R} The set of fundamental weights of R

Λr(R) The lattice of roots of R
(resp. Λr(R)±) (resp. the semi-group of positive/negative roots)

Λw(R) The lattice of all weights of R
(resp. Λw(R)±) (resp. the monoid of non-negative/non-positive weights)

ρω The irreducible representation of GR with highest weight ω
ρi The ith fundamental representation of GR, i = 1, . . . , `R

Γ(ρ) The weight system of the representation ρ
Multρ(ω) The dimension of the weight space of ω in the representation ρ

χω (resp. χi) The formal character of ρω (resp. ρi)
w The Weyl vector of gR

[i1 . . . i`R ]R Components of a weight in the ω-basis of R
(x1, . . . , x`R) Linear coordinates on hR w.r.t. the co-root basis {α∨1 , . . . , α∨`R}
(Q1, . . . , Q`R) (exp(x1), . . . , exp(x`R))

CR (resp. KR) The Cartan (resp. symmetrised Cartan) matrix of R

MDZ
R /MLG

ω /H
[µ]
g,n

(MDZ
R /MLG

ω /Hg,n)
Dubrovin–Zhang/Landau–Ginzburg/Hurwitz Frobenius mani-
folds (resp. their underlying complex manifolds)

n ` d A padded partition of d ∈ N (i.e., parts are allowed to be zero)
|n| (resp. `(n)) The length of a partition n (resp. the number of parts in n)

Table 1.1. Notation employed throughout the text.
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1.3. Organisation of the paper. — The paper is organised as follows. In Section 2
we recall the definition of the affine Lie theoretic Frobenius manifolds of Dubrovin–
Zhang (DZ). In Section 3 we state how to construct Frobenius manifolds in terms of
Landau–Ginzburg (LG) superpotentials defined on suitable strata of a Hurwitz space.
We also recall the construction in [6], describing how to find LG-superpotentials for
DZ-manifolds from the characteristic equation of a suitable degeneration of the Lax
operator for the type R periodic relativistic Toda chain. This boils down to finding
relations in the representation ring of G, which we determine for all Dynkin types
giving explicit algebraic expressions for the corresponding superpotentials. In Sec-
tion 4 we prove the mirror theorem, and determine in turn closed-form prepotentials
for the corresponding Dubrovin–Zhang Frobenius manifolds, including the hitherto
unknown exceptional cases in type E6, E7 and F4. Finally, in Section 5, we discuss
the applications to the extended R-type Toda hierarchies and the calculation of the
multiplicities of the Lyashko–Looijenga map of MLG

ω . Our notation(1) is described in
Table 1.1.

Acknowledgements. — We are grateful to I. A. B. Strachan for his comments on a
previous version of the manuscript. We are also indebted to the anonymous referee
for numerous helpful suggestions of improvement.

2. Dubrovin–Zhang Frobenius manifolds

2.1. Generalities on Frobenius manifolds. — We start by recalling the basic defi-
nitions from the theory of Frobenius manifolds.

Definition 2.1. — A (complex, holomorphic) Frobenius manifold is a 5-tuple M =

(M, ·, η, e, E), where M is a finite dimensional complex manifold such that at each
point p ∈M , the fibre TpM of the holomorphic tangent bundle at p has the structure of
a unital associative commutative algebra with multiplication · and identity element e,
varying holomorphically. Additionally, η is a flat, holomorphic, non-degenerate sym-
metric (0, 2)-tensor such that the Frobenius property holds:

η(X · Y,Z) = η(X,Y · Z), ∀ X,Y, Z ∈ Γ(M,TM).

Moreover, the following properties are satisfied:
(1) the unit vector field is horizontal, ∇e = 0, w.r.t. the Levi-Civita connection ∇

associated to η;
(2) there exists a (0, 3)-tensor c ∈ Γ(M, Sym3T ∗M) such that ∇W c(X,Y, Z) is

totally symmetric ∀ W,X, Y, Z ∈ Γ(M,TM);

(1)To declutter the polynomial expressions of the prepotentials of MDZ
R

, and in a slight departure
from the conventions in the Frobenius manifolds literature, components of a chart of MDZ

R
will

consistently be written with lower indices; in particular the Einstein summation convention is never
assumed.

J.É.P. — M., 2022, tome 9



Mirror symmetry for extended affine Weyl groups 915

(3) there exists E ∈ Γ(M,TM) such that ∇E is covariantly constant, and the cor-
responding 1-parameter group of diffeomorphisms acts by conformal transformations
of the metric and the product tensor.

A complex Frobenius manifold is semisimple if the set

Discr(M) := {p ∈M | ∃ v ∈ TpM with v · v = 0}

has positive complex codimension. Whenever E is in the group of units of (TpM, ·),
one may define a second flat metric, γ ∈ Γ(M, Sym2T ∗M), by

γ(E ·X,Y ) = η(X,Y ).

A key consequence of Definition 2.1 is the existence of a one-parameter affine family
of flat metrics on T ∗M . The non-degenerate pairings η and γ on Γ(M,TM) define
dual cotangent metrics η∗ and γ∗, the Gram matrices of which are inverses of those
of η and γ. Then Definition 2.1 implies that γ∗ and η∗ form a flat pencil of metrics:
i.e., γ∗ + λη∗ is a flat metric for any λ ∈ C, and its Christoffel symbols satisfy
Γ(γ∗ + λη∗) = Γ(γ∗) + λΓ(η∗).

Since the metric η is flat, a Frobenius manifold carries a canonical affine equivalence
class of charts given by flat frames for η. Spelling out the Frobenius manifold axioms
in one such chart (t1, . . . , tdimM ) on some sufficiently small open U ⊂M amounts to
the local existence of a holomorphic function F (the prepotential) with the following
properties (we denote ∂i as a shorthand for ∂/∂ti):

(i) the Gram matrix ηij ≡ η(∂i, ∂j) = ∂3
ijkF , is constant and non-degenerate;

(ii) e = ∂t1 ;
(iii) cijk ≡ c(∂i, ∂j , ∂k) = η(∂i · ∂j , ∂k) = ∂3F/∂ti∂tj∂tk;
(iv) E =

∑
i diti∂i +

∑
i ri∂i;

(v) γij =
∑
k E

kckij ;
(vi) ∂i · ∂j =

∑
k c

k
ij∂k, where ckij :=

∑
m η

kmcmij , and ηij := (η)−1
ij ;

(vii) F satisfies the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations,∑
k,`

∂3F

∂ti∂tj∂tk
ηk`

∂3F

∂t`∂tm∂tn
= j ←→ m.

2.2. Frobenius manifolds from extended affine Weyl groups. — We will here give a
condensed description of the Dubrovin–Zhang construction of semi-simple Frobenius
manifold structures on the space of regular orbits of extended affine Weyl groups,
which follows closely the account given in [6].

Let gR be a rank-`R complex simple Lie algebra associated to a root system R,
hR the associated Cartan subalgebra, dim hR = `R, and WR the Weyl group. The
construction of Dubrovin–Zhang Frobenius manifolds depends on a canonical choice
of a marked node in the Dynkin diagram of R, which will be labelled k ∈ {1, . . . , `R},
and we let αk and ωk denote the corresponding simple root and fundamental weight,
respectively. This node is an “attaching” vertex for the external nodes in the diagram,
that is, the one which if removed splits the Dynkin diagram into disconnected A-type
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916 A. Brini & K. van Gemst

pieces: we depict this choice of marking on the Dynkin diagrams with one vertex
added, corresponding to the affine root, in Figure 2.1. Except for R = A`, where
any node can be chosen, k marks the fundamental representation ρk of gR of highest
dimension.

The action of WR on hR may be lifted to an action of the affine Weyl group
ŴR
∼= WR n Λ∨r (R), with Λ∨r (R) being the lattice of co-roots:

ŴR × hR 7−→ hR,

((w,α∨), h) 7−→ w(h) + α∨.

Then the extended affine Weyl group W̃R is defined as the semi-direct product W̃R :=

ŴR n Z acting on hR ⊕ C by

(2.1)
W̃R × hR ⊕ C −→ hR ⊕ C,

((w,α∨, `), (h, v)) 7−→ (w(h) + α∨ + `ωk, v − `).

Let ΣR denote the hyperplane arrangement associated to the root system R, and
hreg
R

:= hR r ΣR be the set of regular elements in hR. The restriction of (2.1) to
hreg
R ⊕C is then a free affine action, whose quotient defines the regular orbit space of

the extended affine Weyl group of R with marked node k as

(2.2) MDZ
R := (hreg

R × C)/W̃R
∼= T

reg
R /WR × C∗,

where T
reg
R = exp(hreg

R ) is the image of the set of regular elements of hreg
R under the

exponential map to the maximal torus TR.

Remark 2.2. — Let (x1, . . . , x`R) be linear coordinates on hR w.r.t. the co-root basis
{α∨1 , . . . , α∨`R}, and extend these to linear coordinates (x1, . . . , x`R ;x`R+1) on hR⊕C.
Writing Qi = exi , we denote IR := C[Q±1 , . . . , Q

±
`R+1] the ring of regular functions

on the algebraic torus TR × C? ' (C?)`R+1. By its definition in (2.2), MDZ
R is a

smooth complex manifold homeomorphic to a Zariski open subset of the affine GIT
quotient Spec IW̃R

R . Note that, in [21, §1, Def. & Main Lem.], the authors consider
a partial compactification of the latter to an affine scheme Spec AR, where AR is
a polynomial subring, satisfying suitable boundedness conditions at infinity, of the
Laurent polynomial ring IR. Then MDZ

R also sits in the underlying affine variety as
an open submanifold.

The linear coordinates (x1, . . . , x`R ;x`R+1) on hreg
R ⊕C can serve as local coordinates

on the regular orbit space. By orthogonal extension of minus the Cartan–Killing form
on hR, we define a non-degenerate pairing ξ on hR × C by

ξ(∂xi , ∂xj ) :=


−(KR)ij if i, j < `R + 1,

dk if i = j = `R + 1,

0 otherwise,

with x`R+1 parametrising linearly the right summand in hR⊕C. Here, di := 〈ωi, ωk〉,
with 〈α, β〉 being the pairing on h∗R induced by the restriction of the Killing form on
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R k Canonically marked affine Dynkin diagram

A` 1, . . . , `

α0

α1 α2 α3 αk α`−2 α`−1 α`

B` `− 1

α0

α1

α2 α3 αj α`−2 α`−1 α`

C` ` α0 α1 α2 α3 αj α`−2 α`−1 α`

D` `− 2

α0

α1

α2 α3 αj α`−2

α`−1

α`

E6 3

α0

α1

α6

α2 α3 α4 α5

E7 3
α0 α1

α7

α2 α3 α4 α5 α6

E8 3
α0α1

α8

α2 α3 α4 α5 α6 α7

F4 2 α0 α1 α2 α3 α4

G2 2 α0 α1 α2

Figure 2.1. Affine Dynkin diagrams with canonical markings, as in
[21, Table 1]. The node corresponding to the affine root is marked in
black, and the canonical marked node is indicated with a ×.

the Cartan subalgebra. The quotient map ℵ : Treg
R × C∗ → MDZ

R from (2.2) defines
a principal WR-bundle on MDZ

R : a section σ̃i, lifts a (sufficiently small) open U ⊂
MDZ

R to the ith sheet of the cover Vi ∈ σ̃−1
i (U) ≡ V1 t · · · t V|WR|. The following

reconstruction theorem holds [21, Th. 2.1]:
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Theorem 2.3. — There exists a unique (up to isomorphism) semisimple Frobenius
structure MDZ

R = (MDZ
R , e, E, η, ·) satisfying the following properties in flat coordinates

(t1, . . . , t`R+1) for η:
(DZ-I) e = ∂tk ;

(DZ-II) E =
1

dk
∂x`R+1

=
∑`R
j=1

dj
dk
tj∂tj +

1

dk
∂t`R+1

;

(DZ-III) the intersection form is γ = σ̃∗i ξ;
(DZ-IV) the prepotential is polynomial in t1, . . . , t`R+1, et`R+1 .

Such Frobenius manifolds will always be of charge one, or equivalently, the prepo-
tential will be a degree 2 quasi-homogeneous function of its arguments.

3. Landau–Ginzburg superpotentials from Lie theory

3.1. One-dimensional LG mirror symmetry. — Hurwitz spaces are moduli spaces
parametrising ramified covers of the Riemann sphere. A point in such a space is an
equivalence class [λ : Cg 7→ P1], where Cg is a genus-g smooth complex projective
curve (compact Riemann surface) and λ is a morphism to the complex projective
line realising Cg as a branched cover of P1; the equivalence relation is here given by
automorphisms of the cover.

We consider Hurwitz spaces with fixed ramification over infinity. Let the preimage
of ∞ consist of m + 1 distinct points, denoted by ∞i ∈ Cg for i = 0, . . . ,m, with λ
having degree ni + 1 near ∞i. The corresponding Hurwitz space will be denoted
Hg,n, where n := (n0, . . . , nm). This is a connected complex manifold (and in fact,
an irreducible quasi-projective complex algebraic variety [25]) of dimension dg,n :=

dim(Hg,n) = 2g + 2m +
∑m
i=0 ni. We will write π, λ and Σi for, respectively, the

universal family, the universal map, and the sections marking the ∞i, as per the
following commutative diagram:

Cg

��

� � // Cg,n

π
��

λ // P1

[λ] �
� pt

//

Pi

DD

Hg,n

Σi

DD

We furthermore denote by d = dπ the relative differential with respect to the universal
family and pcr

i ∈ Cg ' π−1([λ]) the critical points dλ = 0 of the universal map.
By the Riemann existence theorem, the critical values of λ, {ui}i=1,...,dg;n , serve as
local coordinates away from the closed subsets in Hg,n in which ui = uj for i 6= j,
whose union is called the discriminant. Additionally, there is an action on a Hurwitz
space given by the affine subgroup of the PGL2(C)-action on the target,

(3.1) (C, λ) 7−→ (C, aλ+ b), ui 7−→ aui + b,

for a, b ∈ C, and ∀ i = 1, . . . , dg;n.
On the complement of the discriminant, we can associate a family of semi-simple,

commutative, unital C-algebra structures on the the tangent fibres at (u1, . . . , udg,n)
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by positing that the coordinate vector fields in the u-chart are the idempotents of the
algebra,

(3.2) ∂ui · ∂uj = δij∂ui .

The unit and Euler vector field,

(3.3) e =

dg;n∑
i=1

∂ui , E =

dg;n∑
i=1

ui∂ui ,

arise here as the generators of the affine action in (3.1) by, respectively, translations
and rescalings.

What remains to be constructed to define a full-fledged Frobenius manifold struc-
ture on Hg,n is a flat non-degenerate symmetric pairing playing the role of η, such that
the vector fields e and E are, respectively, horizontal and linear under its Levi-Civita
connection. This will depend on additional data [16, Lect. 5], as we now explain in
the generality we will require.

Definition 3.1. — A meromorphic function µ : Cg,n → P1 on the universal family is
λ-admissible if it satisfies the following properties:

(i) µ does not factor through λ, i.e., @ g : P1 → P1 s.t. µ = g ◦ λ;
(ii) 0 6= dµ ∈ Ω1

Cg,n/Hg,n
;

(iii) div(µ) =
∑`
i=0 aiΣi(Hg,n) for ai ∈ Z.

The datum of a λ-admissible projection µ allows to define extra structure on the
universal curve, as follows. We can first of all canonically associate to it a relative
one-form given by d logµ ∈ Ω1

Cg,n/Hg,n
(∞0 + · · · +∞m): this is an exact third-kind

differential on the fibres of the universal curve, which has simple poles at ∞i with
residues Res∞i

d logµ = ai. The second ingredient that the µ-projection provides is
a notion of a meromorphic Ehresmann connection on TCg,n, defined in terms of its
singular foliation by level sets of µ. Let p ∈ Cg,n with dµ(p) 6= 0, m := µ(p), so that
the leaf C

(m)
g,n := {p′ ∈ Cg,n | µ(p′) = m} is locally transverse to the fibres of the

universal curve. Let U be a small neighbourhood of π(p) ∈ Hg,n; by transversality,
there is a canonical local holomorphic section Σm : U → π−1(U) of Cg,n, lifting U to
π−1(U) ∩ C

(m)
g,n . Accordingly, holomorphic vector fields X ∈ Γ(U, THg,n) are lifted to

local holomorphic sections (Σm)∗X of TCg,n which are tangent to the leaves of the
foliation. This defines locally around p a holomorphic derivation as

δ
(µ)
X f := L(Σm)∗Xf.

Globally, however, the leaves of the µ-foliation will fail to be transverse to the fibres
of the universal curve at the critical locus of µ: the derivation δ(µ)

X will therefore take
values in the ring of meromorphic functions on Cg,n, with poles on the ramification
divisor of µ:

δ
(µ)
X : H0(Cg,n,OCg,n) −→ H0(Cg,n,KCg,n),

f 7−→ (δ
(µ)
X f)(p) := (L(Σµ(p))∗X)f(p).

(3.4)
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In more low-brow terms, and in local coordinates p = (u1, . . . , udg;n ;µ) on the com-
plement of dµ = 0, the derivation δ

(µ)
∂ui
f is simply the partial derivative taken with

respect to ui whilst keeping µ constant. The meromorphicity of the derivation near
an order-r ramification point qcr ∈ Cg,n with µ(qcr) = m(u1, . . . , udg;n), dµ(qcr) = 0,
is then just expressing that

δ
(µ)
∂ui

(µ(p)−m)1/r = −r−1(µ(p)−m)(1−r)/r∂uim

has a pole of order r − 1 at p = qcr as soon as ∂uim(u) 6= 0.
With these definitions at hand, we can define a Frobenius manifold structure

H
[µ]
g,n := (Hg,n, ·, η, e, E) on the Hurwitz space Hg,n. For later convenience, we will

introduce an additional parametric dependence of the Frobenius structure on a nor-
malisation factor N ∈ C?: this will be immaterial per se in the comparison with the
Frobenius manifolds of Theorem 2.3, as such factor can be scaled away by a Frobenius
manifold isomorphism given by a time-1/(2N) flow along the Euler vector field,(2) but
it will be helpful in simplifying the notation of the proof of Theorem 3.6. In terms of
the datum of (λ, µ,N), the metric η is defined by the residue formula

(3.5) η(X,Y ) := −N
∑
i

Res
pcr
i

δ
(µ)
X λ δ

(µ)
Y λ

dλ

(dµ

µ

)2

,

for X,Y ∈ Γ(Hg,n, THg,n). Furthermore, combining (3.2) and (3.5) the 3-tensor
c(X,Y, Z) is defined by the LG formula

(3.6) c(X,Y, Z) := η(X,Y · Z) := −N
∑
i

Res
pcr
i

δ
(µ)
X λ δ

(µ)
Y λ δ

(µ)
Z λ

dλ

(dµ

µ

)2

,

which clearly satisfies the Frobenius property. Moreover, the second flat pairing is
obtained upon replacing λ by log λ in (3.5),

(3.7) γ(X,Y ) := −N
∑
i

Res
pcr
i

δ
(µ)
X log λ δ

(µ)
Y log λ

d log λ

(dµ

µ

)2

.

Proposition 3.2. — The residue formulas (3.5)–(3.7) define a Frobenius manifold
structure H

[µ]
g,n := (Hg,n, ·, η, e, E), which is semi-simple outside the discriminant

of Hg,n.

The statement of the Proposition is a direct specialisation of the Main Lemma
and the proof of Th. 5.1 in [16, Lect. 5], where Frobenius structures are constructed
on (suitable covers) of Hurwitz spaces Hg,n. These depend on a choice of a primary
differential φ: a meromorphic relative 1-form on π : Cg,n → Hg,n satisfying suitable ad-
missibility conditions, classified in five Types I–V in [16, Lect. 5]. If µ is λ-admissible,
the case φ :=

√
N d logµ considered here (an exact third kind differential having at

most simple poles at the poles of λ) is readily seen to satisfy the criteria of Type III
given in [16, Lect. 5], and therefore leads to an honest Frobenius manifold. We will

(2)The Frobenius manifolds of Theorem 2.3 have charge d = 1, hence their prepotentials are
quasi-homogeneous of degree 3− d = 2. A time-s Euler flow hence scales them by 2s.
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call the marked meromorphic function λ a Landau-Ginzburg (LG) superpotential for
the Frobenius manifold, with primary differential

√
N(dµ)/µ.

3.2. Superpotentials for extended affine Weyl groups. — We give here a general
method for the construction of spectral curves associated to affine relativistic Toda
chains, as anticipated in [6], for arbitrary Dynkin types.

Let ω ∈ Λ+
w(R) be the highest weight of a non-trivial irreducible representation

ρω ∈ Rep(GR) of minimal dimension. In particular, ρω is quasi-minuscule, i.e., all
non-zero weights in the weight system Γ(ρω) are in the same irreducible orbit under
the action of the Weyl group, and it is minuscule (quasi-minuscule with no zero
weights) for all R 6= B`, E8, F4 and G2. Consider the characteristic polynomial of
g ∈ G in the representation ρω,

(3.8) Qω(χ1, . . . , χ`R ;µ) = det
ρω

(g − µ1) =

dim ρω∑
k=0

(−µ)(dim ρω−k)χ∧kρω (g),

where the second equality is the co-factor expansion of the determinant. Recall that
the representation ring of a simple Lie group is an integral polynomial ring generated
by the fundamental representations,
(3.9) χ∧kρω (g) = pωk (χ1, . . . , χ`R) ∈ Z[χ1, . . . , χ`R ],

where χi(g) := Trρi(g) is the ith fundamental character. Since ρω is quasi-minuscule,
Qω factorises as
(3.10) Qω = (1− µ)z0Qred

ω = (1− µ)z0
∏

06=ω′∈Γ(ρω)

(
eω
′·h − µ

)
,

where z0 is the dimension of the zero weight space of ρω, and eh with [eh] = [g] is a
choice of Cartan torus element conjugate to g: in particular, z0 = 0 and Qred

ω = Qω

for R 6= B`, E8, F4, or G2.
Define now

(3.11) Pω(w0, . . . , w`R+1;λ, µ) := Qred
ω (χi = wi − δikλ/w0;µ),

and consider, as w := (w0;w1, . . . , w`R) ∈ C∗ × C`R varies, the family of plane alge-
braic curves in SpecC[λ, µ] with fibre at w given by C(ω)

w := V (Pω). We compactify
and desingularise the fibres over w by taking the normalisation C(ω)

w of their closure
in P2. Marking the λ-projection (λ, µ) 7→ λ ∈ P1 and varying w defines a subvariety
MLG
ω of the Hurwitz space Hgω,nω , where gω = h1,0

(
C

(ω)
w

)
, and nω records the rami-

fication profile at infinity of the λ-projection.

Remark 3.3. — It is not obvious that the above defines an immersion of MLG
ω into

Hgω,nω . This will follow from the “rectification statement” in Lemma 4.1, according
to which MLG

ω embeds as a dimension-(`R + 1) affine hyperplane into Hgω,nω in the
respective flat coordinate systems.

In the next two Sections we will calculate the character relations (3.9), and therefore
determine explicitly the polynomials Pω. The following Proposition is an anticipated
consequence of this direct calculation.
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Proposition 3.4. — Let P̃(j)
ω (w0, . . . , w`R ;µ) := [λj ]Pω be the jth coefficient of Pω in

the variable λ, and let jmax
ω := degλ Pω. Then P̃

(jmax
ω )

ω is a product of a monomial µaω
and cyclotomic polynomials Φki(µ)

(3.12) P̃
(jmax
ω )

ω (w0, . . . , w`R ;µ) = µaω
bω∏
i=1

Φkωi (µ),

with aω ∈ Z>0 and bω, kωi ∈ Z>0. Moreover,

P̃(j)
ω (w0, . . . , w`R ; 0) = δj0,(3.13)

lim
µ′→0

(−µ′)dim ρω P̃(j)
ω (w0, . . . , w`R ; 1/µ′) = δj0.(3.14)

Remark 3.5. — The projection λ : C
(ω)
w → P1 can only possibly have poles at µ =∞

or at the zeroes of P̃(jmax
ω )

ω . The first equality in the Proposition, (3.12), entails then
that δ(µ)

∂wi
P̃

(jmax
ω )

ω = 0 since the r.h.s. is constant in w at fixed µ. In particular, the
ramification profile nω is independent of w.

The second part of the Proposition implies that the zeroes of µmust occur at points
that are poles of λ, since by (3.13) the equation Pω(λ, µ)|µ=0 = 0 has no solutions for
finite λ. Likewise, replacing µ → µ = 1/µ′ reveals that poles of µ are also poles of λ
by (3.14). Therefore, d logµ has at most simple poles at the poles of λ, showing in
particular that µ satisfies Property (iii) in Definition 3.1, with Properties (i) and (ii)
being obvious, and is therefore λ-admissible.

Following the discussion of Section 3.1, and fixing Nω ∈ C?, we can then de-
fine a family of semi-simple, commutative, unital Frobenius algebras on TMLG

ω

via (3.5)–(3.6):

η(∂wi , ∂wj ) = −Nω
∑
`

Res
pcr
`

δ
(µ)
∂wi

λ δ
(µ)
∂wj

λ

dλ

(dµ

µ

)2

,(3.15)

η(∂wi , ∂wj · ∂wk) = −Nω
∑
`

Res
pcr
`

δ
(µ)
∂wi

λ δ
(µ)
∂wj

λδ
(µ)
∂wk

λ

dλ

(dµ

µ

)2

,(3.16)

γ(∂wi , ∂wj ) = −Nω
∑
`

Res
pcr
`

δ
(µ)
∂wi

log λ δ
(µ)
∂wj

log λ

d log λ

(dµ

µ

)2

,(3.17)

where {pcr
` }` are the ramification points of λ : C

(ω)
w → P1. This doesn’t yet give a

Frobenius manifold, or indeed a Frobenius submanifold of H[µ]
gω,nω , as η is not guar-

anteed to be non-degenerate or flat at this stage. The following statement establishes
that this is the case.

Theorem 3.6 (Mirror symmetry for DZ Frobenius manifolds). — The Landau–
Ginzburg formulas (3.15)–(3.17) define a semi-simple conformal Frobenius submani-
fold ιω : MLG

ω = (MLG
ω , η, e, E, ·) ↪→ H

[µ]
gω,nω . In particular, (3.15) and (3.17) give flat,
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non-degenerate metrics on TMLG
ω , and the identity and Euler vector fields read

e = w−1
0 ∂wk , E = w0∂w0

.

Furthermore,
MLG
ω 'MDZ

R .

The explicit embedding ιω : MLG
ω ↪→ Hgω,nω is described by the relations (3.10)

in the character ring of G, setting the coefficients associated to the interior of the
Newton polytope of Pred

ω (λ, µ) to be the polynomials pωk (w1, . . . , wr).
The proof of Theorem 3.6 requires two key steps:
(1) computing the exterior relations (3.10) in the Weyl character ring of G: this

was solved for simply-laced cases in [4, 7], and we complete the solution here in full
generality;

(2) proving that the LG formulas (3.15)–(3.17), combined with the reconstruction
theorem Theorem 2.3, establish the mirror statement of Theorem 3.6.

In the remainder of this Section we perform the first step and construct explicitly
the family of LG mirror duals to type-R Dubrovin–Zhang Frobenius manifolds. We
will then devote Section 4 to show how the second step leads to a proof of Theorem 3.6.

3.3. Superpotentials for classical Lie groups. — In the following we present the
construction of the spectral curve for the classical root systems R = A`, B`, C`, D`

independently, and show how our construction for a weight ω corresponding to a
minimal-dimensional representation ρω recovers the mirror results of [20] for these
cases. We will use the shorthand notation εi :=χ∧iρω for the exterior characters of ρω.

3.3.1. R = A`. — The Dynkin diagram for affine A` is shown in Figure 2.1. In this
case we can choose any (non-affine) node to be the marked one, since the removal of
any node from the corresponding finite Dynkin diagram results in two disconnected
A-type pieces, with ranks adding up to `− 1.

A choice of minimal, nontrivial, irreducible representation ρω := ρ1 = (` + 1)

for SLC(` + 1) is the defining (` + 1)-dimensional representation, the other choice
corresponding to its dual representation, ρ` = ∧`�. We then have that εi = χi for
i = 1, . . . , `, and ε0 = ε`+1 = 1. Thus (3.8) becomes

(3.18) P[10...0]A`
=

(−1)kλµk

w0
+ 1 + (−1)`+1µ`+1 +

∑̀
i=1

(−1)iwiµ
i,

which defines a family of genus 0 curves. Setting (3.18) equal to zero and solving for λ
gives

(3.19) λ =
(−1)kw0(1 + (−1)`+1µ`+1 +

∑`
i=1(−1)iwiµ

i)

µk
,

which is, for every point in the moduli space, a meromorphic function of µ with
poles at 0 and ∞ of orders k, ` + 1 − k, respectively. We see that we have ` + 1
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parameters w0, . . . , w`, and so the resulting Frobenius manifold is `+1 dimensional.(3)

In particular, it is an `+ 1 dimensional submanifold of the Hurwitz space H0,nω , with
ramification profile nω = (k − 1, `− k). This Hurwitz space, however, is of dimension
2 + k − 1 + ` − k = ` + 1, and so the DZ-Frobenius manifold associated to A` is
isomorphic to (a full-dimensional ball inside) its associated Hurwitz space. This, as
we will see, will not be the case for the other Dynkin types.

3.3.2. R = B`. — For ` > 2, the minimal, nontrivial, irreducible representation of
Spin(2` + 1) is the defining representation ρ1 = (2` + 1) of the special orthogonal
group in (2` + 1)-dimensions,(4) which is the irreducible representation with highest
weight ω1. In this case the marked node is k = `− 1, as depicted in Figure 2.1.

For i < `, the ith fundamental representation ρi of B` is the ith exterior power of
(2` + 1). For i = `, the decomposition of the tensor square of ρ` leads to

p
[10...0]B`
i =

{
χi if i < `,

χ2
` −

∑`−1
j=0 χj if i = `.

Together with the self-duality relation p
[10...0]B`
i = p

[10...0]B`
2`+1−i , we get that the curve

is the zero locus of

(3.20) P[10...0]B`
=

(−1)`(µ− 1)(µ+ 1)2µ`−1λ

w0
+
∑̀
i=0

(−1)iµi(1− µ2(`−i)+1)εi,

with

εi =


1 if i = 0,

wi if 1 < i < `,

w2
` −

∑`−1
j=0 wj if i = `.

Note that (3.20) has a factor of (µ − 1), since (2` + 1) has a one-dimensional zero
weight space. Setting to zero the reduced characteristic polynomial Pred

[10...0]B`
=

P[10...0]B`
/(µ− 1) gives

(3.21) λ =
(−1)`w0

µ`−1(µ+ 1)2

2∑̀
j=0

µj
(min(j,2`−j)∑

i=0

(−1)iεi

)
.

For each point in the moduli space, this is a rational function in µ with three poles at
0,−1, and ∞ of orders `− 1, 2, `− 1, respectively. Hence, MLG

[10...0]B`
is a sublocus in

the (2` + 1)-dimensional Hurwitz space H0,nω , with nω = (`− 2, 1, `− 2). The latter
carries an involution given by sending µ→ 1/µ, and MLG

[10...0]B`
is characterised as the

(`+ 1)-dimensional stratum that is fixed by the involution.

(3)This is, in fact, the case for all DZ-manifolds associated to a simple Lie algebra of rank `.
(4)For ` = 2, the 4-dimensional spin representation ρ2 is both minimal and minuscule. It is also

isomorphic to the vector representation ρ1 of C2, which is included in the discussion of the next
section.
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3.3.3. R = C`. — The minimal, nontrivial, irreducible representation for Sp(2`) is
the defining representation ρ1 = (2`) of the rank 2` symplectic group. Again, this
representation corresponds to the one in which ω1 is highest weight. The canonical
node is the `th node, as shown in Figure 2.1.

The exterior powers ∧iρ1 are reducible, with only fundamental representations
appearing as direct summands in their decomposition, giving the character relations

p
[10...0]C`
i =

{∑i/2
j=0 χ2j for i even,∑(i−1)/2
j=0 χ2j+1 for i odd.

From this, and the fact that k = ` for C`, we see that the characteristic polynomial
(3.8) is

P[10...0]C`
=

(−1)`µ`λ

w0
+
`−1∑
i=0

(−1)iεiµ
i(1 + µ2(`−i)) + (−1)`ε`µ

`,

with ε2i =
∑i
j=0 χ2j , ε2i+1 =

∑i
j=0 χ2j+1 (and ε0 = 1 as usual). Setting equal to zero

and solving for λ gives

λ =
(−1)`−1w0

(∑`−1
i=0(−1)iεiµ

i(1 + µ2(`−i)) + (−1)`ε`µ
`
)

µ`
,

which is a rational function in µ with two poles at 0 and ∞ both of order `. Hence,
the associated covering Hurwitz space is H0,nω , with nω = (` − 1, ` − 1), which has
dimension 2`. As before, there is an involution on this Hurwitz space sending µ→ 1/µ,
with MLG

[10...0]C`
being the (`+ 1)-dimensional stratum that is fixed by it.

3.3.4. R = D`. — For ` > 4, the minimal, nontrivial, irreducible representation of
Spin(2`) is the defining vector(5) representation ρ1 = (2`)v of SO(2`), which corre-
sponds to the irreducible representation with highest weight ω1. The canonical node
is the one with label `− 2, as shown in Figure 2.1.

The character relations for D` were found in [4] to be

p
[10...0]D`
i = χi, i < `− 1,

p
[10...0]D`
`−1 = χ`−1χ` −

{∑(`/2)−2
j=0 χ2j+1 if ` is even,∑(`−3)/2
j=0 χ2j if ` is odd,

p
[10...0]D`
` = χ2

`−1 + χ2
` − 2

{∑(`/2)−1
j=0 χ2j if ` is even,∑(`−3)/2
j=0 χ2j+1 if ` is odd,

and p
[10...0]D`
i = p

[10...0]D`
2`−i , so that

(3.22) P[10...0]D`
=

(−1)`µ`−2(µ2 − 1)2λ

w0
+

`−1∑
i=0

(−1)iεiµ
i(1 + µ2(`−i)) + (−1)`µ`ε`,

(5)For ` = 4, this can be any of the irreducible 8-dimensional representations, related by triality.
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where as before we denote εi(w1, . . . , w`) = p
[10...0]D`
i (χj = wj), with ε0 = 1. Setting

(3.22) equal to zero and solving for λ gives

(3.23) λ = (−1)`−1
w0

(∑`−1
i=0(−1)iεiµ

i(1 + µ2(`−i)) + (−1)`µ`ε`

)
µ`−2(µ2 − 1)2

,

which, for every point w, is a rational function in µ with four poles at 0, ∞, 1, −1

of orders ` − 2, ` − 2, 2, 2, respectively. Hence, the parent Hurwitz space is H0;nω ,
where nω = (` − 3, ` − 3, 1, 1), which has dimension 2` + 2. Once more this hosts an
involution obtained by sending µ→ 1/µ, identifying MLG

[10...0]D`
as its fixed locus.

3.4. Comparison with the Dubrovin–Strachan–Zhang–Zuo construction

For the case of R = A`, an LG-superpotential was already found in the original
paper [16], with(6)

(3.24) λ =

k+m∑
j=0

bjµ
m−j ,

where bj ∈ C and b0bk+m 6= 0. Moreover, in [20], the authors construct a three-integer
parameter family of superpotentials of the form(7)

(3.25) λDSZZ(`, k,m) =

4mµm
∑̀
j=0

aj2
−2(−j+k+m)

(
µ+ 1/

√
µ
)2(−j+k+m)

(µ− 1)m
.

The key result of [20] is an identification of (3.25) with a superpotential for a
Dubrovin–Zhang Frobenius manifold of type B`, C`,D`, possibly with a non-canonical
choice of marked node in the Dynkin diagram, for suitable choices of (`, k,m). In par-
ticular, the mirror theorem for the canonical label k is obtained by setting (`, k,m)

equal to (`, `−1, 1), (`, `, 0), and (`, `−2, 1), respectively. We shall now show that the
results of [16] and [20] coincide with our construction in the previous section.

3.4.1. R = A`. — By using the fact that k +m = `+ 1, (3.24) becomes

λ =

∑`+1
j=0 bjµ

`+1−j

µk
,

which is the same as (3.19) by

bi = (−1)kw0


1 if i = 0,

(−1)`+1 if i = `+ 1,

wi otherwise.

(6)To relate this to the expression in [16] let µ = eiφ.
(7)To relate this to the expression in [20] let µ = e2iφ.
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3.4.2. R = B`. — In the case of B` we consider (3.25) with k = `−1, m = 1, which is

(3.26) λDSZZ(`, `− 1, 1) =
4µ
∑`
j=0 aj2

−2(`−j) (√µ+ 1/
√
µ
)2(`−j)

(µ− 1)2
.

Simplifying (3.26) gives:

w0

(µ− 1)2

∑̀
j=0

aj2
−2(`−j−1)(µ+ 1)2(`−j)

w0 µ`−j−1
=

(−1)`w0

(µ+ 1)2µ`−1

2∑̀
β=0

(−1)βCβµ
β ,

where we have used the binomial theorem and let µ 7→ −µ, with

Cβ =
(−1)`

w0

∑
j,α|j+α=β

aj2
−2(`−j−1)

(
2(`− j)

α

)
=

(−1)`

w0

β∑
j=0

aj2
−2(`−j−1)

(
2(`− j)
β − j

)
.

On the other hand, the superpotential constructed from the spectral curve, (3.21),
is given by

λB` =
(−1)`w0

µ`−1(µ+ 1)2

2∑̀
j=0

µj
(min(j,2`−j)∑

i=0

(−1)iεi

)
,

which we can write as

(3.27) λB` =
(−1)`w0

µ`−1(µ+ 1)2

2∑̀
j=0

bjµ
j ,

with bj =
∑min(j,2`−j)
i=0 (−1)iεi; note that bj = b2`−j . This means that we want to

match up bi = (−1)iCi, hence

(3.28)
min(i,2`−i)∑

j=0

(−1)jεj =
(−1)`+i

w0

i∑
j=0

aj2
−2(`−j−1)

(
2(`− j)
i− j

)
.

We claim that

(3.29) εi =
(−1)`

w0

∑̀
j=0

aj2
−2(`−i−1)

(
2`− 2j + 1

i− j

)
.

Proof. — The i = 0 case is clear giving ε0 = (−1)`

w0
2−2(`−1)a0 obtained by taking

j = 0.
So suppose 0 < i 6 `. Then from (3.28) we get

εi =
(−1)`

w0

i∑
j=0

aj2
−2(`−j−1)

(
2(`− j)
i− j

)
+

(−1)`

w0

i−1∑
j=0

aj2
−2(`−j−1)

(
2(`− j)
i− 1− j

)

=
(−1)`

w0

(
ai2
−2(`−i−1) +

i−1∑
j=0

aj2
−2(`−j−1)

((
2(`− j)
i− j

)
+

(
2(`− j)
i− 1− j

)))
.
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Furthermore,(
2(`− j)
i− j

)
+

(
2(`− j)
i− 1− j

)
=

(2(`− j))!
(i− j)!(2`− i− j)!

+
(2(`− j))!

(i− j − 1)!(2`− i− j + 1)!

=

(
2`− 2j + 1

i− j

)
,

which gives the result for i 6 `. Hence, since εi = ε2`+1−i, we have (3.29) for all i. �

3.4.3. R = C`. — In the case of C`, we consider (3.25) with k = `, m = 0 which is

(3.30) λDSZZ(`, `, 0) =
∑̀
j=0

aj2
−2(`−j)

(
√
µ+

1
√
µ

)2(`−j)

.

Simplifying (3.30) gives:

(−1)`−1w0

µ`

∑̀
j=0

(−1)`−1aj2
−2(`− j)(µ+ 1)2(`−j)

w0µ−j
=

(−1)`−1w0

µ`

2∑̀
β=0

Cβµ
β ,

where we again have used the binomial theorem, and with

Cβ =
(−1)`−1

w0

β∑
j=0

aj2
−2(`−j)

(
2(`− j)
β − j

)
.

Thus, the equivalence is obtained in the case of C` by letting

εi 7−→
(−1)`+i−1

w0

i∑
j=0

aj2
−2(`−j)

(
2(`− j)
i− j

)
.

3.4.4. R = D`. — For D`, we want to consider (3.25) with k = `− 2, m = 1, which
is of the form

λDSZZ(`, `− 2, 1) =
4µ
∑`
j=0 aj2

−2(`−j−1)
(√
µ+ 1/

√
µ
)2(`−j−1)

(µ− 1)2
.

This is equivalent to

(−1)`−1w0

(µ− 1)2µ`−2(µ+ 1)2

∑̀
j=0

(−1)`−1aj(µ+ 1)2(`−j)

22(`−j−2)w0µ−j
=

(−1)`−1w0

µ`−2(µ2 − 1)2

2∑̀
β=0

Cβµ
β ,

with

Cβ =
(−1)`−1

w0

∑
aj2
−2(`−j−2)

(
2(`− j)
β − j

)
,

where, again, the binomial theorem has been used. Hence, the map

εi 7−→
(−1)`+i−1

w0

i∑
j=0

aj2
−2(`−j−2)

(
2(`− j)
β − j

)
gives the equivalence.
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3.5. Superpotentials for exceptional Lie groups. — We present here the construc-
tion of the spectral curve for the exceptional types E6, E7, F4, and G2. The E8 case
was treated extensively in [6] and [7], and we only give a very brief presentation here.

As for the classical cases, the construction of the superpotential hinges on deter-
mining the character relations (3.9) for all k. Explicitly, for all dominant weights
$ =

∑
i$iωi ∈ Λ+

w(R) we should determine N (ω,k)
$ ∈ Z such that

(3.31) pωk =
∑

$∈Λ+
w(R)

N (ω,k)
$

`R∏
i=1

χ$ii .

Definition 3.7. — A set of dominant weights Πω ⊂ Γ(∧•ρω) is called pivotal for ω if

∀$′ ∈ Γ(∧•ρω), ∃$ ∈ Πω, $′ � $.

Here $′ � $ denotes the canonical partial ordering of weights, i.e.,

$′ � $ ⇐⇒ $ −$′ =

`R∑
i=1

niαi with ni > 0.

Definition 3.7 then states that a set Πω of dominant weights is pivotal for a repre-
sentation ρω if it is contained in the weight system of the exterior algebra of ρω, and
all the other weights in Γ(∧•ρω) are lower, in the partial order, than some of element
of Πω.

It will be useful, in the following, to consider pivotal sets that are as small as
possible. As for the classical cases, we take ω to sit in a minimal non-trivial orbit
of WR, as described in Table 3.1.

Example 3.1. — Consider the decomposition of the exterior algebra of ρω into irre-
ducible representations,

(3.32) Γ(∧•ρω) =
⊕
ω′

Mult∧•ρω (ω′)ρω′ ,

and let Πω denote the finite set of dominant weights appearing on the r.h.s. with
non-zero multiplicity. Then Πω is pivotal for ω, although not necessarily of minimal
cardinality. Suppose e.g. ω = α0 is the highest root, so that ρω = g is the adjoint
representation. Then the dominant weight given by twice the Weyl vector, 2w =

2
∑
i ωi =

∑
α>0 α, appears with multiplicity Mult∧•g(w) = 1 in (3.32), and it is

higher than any other highest weight in the decomposition of ∧•ρω into irreducibles.
In this case, Πα0

= {w} is pivotal and of minimal cardinality.
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R ω ρω |Iω|

E6 [100000] (resp. [000010]) 27E6 (resp. 27E6) 111

E7 [0000010] 56E7
907

E8 [00000010] 248E8 950077

F4 [0001] 26F4
74

G2 [10] 7G2 5

Table 3.1. Highest weights of minimal representations for excep-
tional root systems. The last column indicates the cardinality of their
sets of admissible exponents (Definition 3.9).

Lemma 3.8. — The sets of dominant weights

(3.33) Πω :=



{
[010120], [120010], [200200], [110110], [001030], ω = [100000]E6

,

[030000], [020020], [000041], [000050]
}
,{

[0002022], [0001113], [0100132], [0101041],

[1001051], [1001061], [0011031], [0010070], ω = [0000010]E7 ,

[0000204], [0110050], [0010070], [1100070],

[1000090], [0003011], [0020040],

[0004000], [0000105], [00000100], [0000006]
}
,

{[22222222]}, ω = [00000010]E8
,

{[0022]}, ω = [0001]F4
,

{[20]}, ω = [10]G2 ,

are pivotal and of minimal cardinality for ω.

For R = E8, F4 and G2 the weight system of ρ is the set of short roots of R, and the
single element of its minimal pivotal set is then the sum of the positive short roots.
For R = E6, E7 the pivotal sets of minimal cardinality in (3.33) can be constructed
by direct inspection of the weight system.

Definition 3.9. — Let Πω be as in Lemma 3.8. We call the finite set

Iω :=
{
ι ∈ (Z>0)`R | ∃$ =

∑
k$kωk ∈ Πω s.t.

∑
k(CR)−1

jk (ιk −$k) ∈ Z60

}
the set of admissible exponents of the exterior algebra ∧•ρω.

In other words, ι is admissible if and only if the corresponding dominant weight
$ι :=

∑
i ιiωi � $′ for some weight $′ in the minimal pivotal sets of Lemma 3.8.

We will use the short-hand notation $ι � Πω when this happens. The terminology is
justified by the following

Lemma 3.10. — Let ι ∈ (Z>0)`R , ι /∈ Iω. Then N (ω,k)
$ι = 0 for all k.
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Proof. — Consider the representation space version of (3.31),

(3.34) ∧k ρω =
⊕
ι
N (ω,k)
$ι

`R⊗
i=1

ριii .

By Definition 3.7, we have $ � Πω for all $ ∈ Γ(∧kρω), and furthermore, by Def-
inition 3.9, the `R-tuple of its coefficients in the basis of fundamental weights is
admissible. Equivalently, if ι′ ∈ (Z>0)`R r Iω is not admissible, then the correspond-
ing dominant weight $ι′ :=

∑
i ι
′
iωi /∈ Γ(∧kρω) is not in the exterior algebra: taking

multiplicities of (3.34) at $ι′ then gives

(3.35) 0 = Mult∧kρω ($ι′) =
∑
ι

N (ω,k)
$ι Mult⊗iρ

ιi
i

($ι′).

Further notice that
(3.36) Mult⊗iρ

ιi
i

($ι′) =

{
1, ι′ = ι,

0, ι′ 6= ι and ι′ − ι /∈ (Z>0)`R .

Both equalities in (3.36) are consequences of the (elementary) fact that the weights
of a tensor product representation are given by the sums of the weights of its factors,
Γ(V ⊗W ) = {v + w | v ∈ Γ(V ), w ∈ Γ(W )}. In particular, the first equality states
that the weight space of $ι in ⊗iριii is 1-dimensional, corresponding to the unique
decomposition of $ι =

∑
i ιiωi as a sum of highest weights for each factor; and the

second is the assertion that $ι′ /∈ Γ(⊗iριii ) when ι′j > ιj for some j. As a consequence,
(3.35) is a linear homogeneous system in the unknowns N (ω,k)

$ι with trivial kernel: the
integral matrix M with coefficients (M)ι′,ι := Mult⊗iρ

ιi
i

($ι′), in a choice of basis
where the column (M)ι′ is to the left of the column (M)ι whenever ι′ − ι ∈ (Z>0)`R ,
is upper-triangular and with ones on the diagonal. The claim then follows. �

By Lemma 3.10, the sum in the polynomial character decomposition (3.31) localises
on the set of admissible exponents, whose cardinality |Iω| is shown in Table 3.1.

Corollary 3.11. — Fix a bijection σ : {1, . . . , |Iω|} → Iω inducing a total order on
the set of admissible exponents, and let Nω ∈ Mat|Iω|×dim ρω (Z) with (Nω)`k := N

(ω,k)
$σ(`) .

Then, there exist explicit rational matrices Aω ∈ GL|Iω|(Q), Bω ∈ Mat|Iω|×dim ρω (Q)

such that Nω = AωBω. In particular, Nω is explicitly computable for all ω.

Proof. — Fix Q :=
{

(Q
(κ)
1 , . . . , Q

(κ)
`R

) ∈ Q`R
}|Iω|
κ=1

rational points in TR in general
position, and define

(Dω)ι,κ :=

`R∏
i=1

χιii (Q
(κ)
1 , . . . , Q

(κ)
`R

),(3.37)

(Bω)κ,` := χ∧`ρω (Q
(κ)
1 , . . . , Q

(κ)
`R

).(3.38)

Evaluating (3.31) at Q amounts to saying that
(3.39) DωNω = Bω.

The identification of the Weyl character ring as an integral polynomial ring generated
by the fundamental characters, (3.9), assures that detDω 6= 0 for general Q, and
(3.39) is a rank-|Iω| linear problem over the rationals. We then have Aω = D−1

ω ,
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and furthermore, the integrality of the coefficients in (3.9) assures that Nω ∈ Z.
Furthermore, given any such Q, the rational matrices Aω, Bω, and Nω are computable
in an entirely explicit manner, as follows: the fundamental characters on the r.h.s. of
(3.37) are given as

χi(Q
(κ)
1 , . . . , Q

(κ)
`R

) =
∑

ω′∈Γ(ρi)

`R∏
j=1

(
Q

(κ)
j

)ω′j ,
and their value can be computed from the known expressions of the elements of the
fundamental weight systems Γ(ρi), i = 1, . . . , `R. The exterior characters in (3.38)
can similarly be computed from the knowledge of Γ(ρω) alone to evaluate the power
sum virtual characters of ρω,

χρω ((Q
(κ)
1 )n, . . . , (Q(κ))n`R) =

∑
ω′∈Γ(ρω)

`R∏
j=1

(
Q

(κ)
i

)nω′j ,
from which the exterior characters χ∧kρω can be recovered using the Girard–Newton
identities,

kχ∧kρω =

k∑
n=1

(−1)n−1χ∧k−nρωχρω .

The integral linear system (3.39) can then be efficiently solved explicitly for Nω using
Dixon’s p-adic lifting algorithm. �

Using (3.8)–(3.11), (3.31) and the complete calculation of the coefficients N (ω,k)
$ι

from Lemma 3.10 and Corollary 3.11 we can construct Landau–Ginzburg superpo-
tentials for all R, as we now describe for the remaining exceptional cases.

3.5.1. R = E6. — The Dynkin diagram for the affine E6 root system is given in
Figure 2.1, for which the canonical label is k = 3. In this case there are two nontrivial
minimal irreducible representations, the 27-dimensional fundamental representation
ρ1 = (27) with highest weight ω1 and its dual representation ρ5 = (27) with highest
weight ω5, related by complex conjugation.

The character relations (3.31) are given explicitly for ω = ω1 in the appendix. The
resulting family of spectral curves has fibres which are hyperelliptic curves of genus 5,
with Newton polygon as shown in Figure 3.1, and ramification profile over ∞

( µ=0︷︸︸︷
3, 6 ,

µ=∞︷︸︸︷
6, 3 ,

µ=εj3︷︸︸︷
3
)
,

where ε3 is a primitive third root of unity. This realisesMLG
[100000]E6

as a 7-dimensional
subvariety of the 42-dimensional Hurwitz space Hgω,nω with gω = 5 and nω =

(5, 5, 2, 2, 2, 2, 2), and explicit embedding described by (A.1).
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Figure 3.1. Newton polygon for the E6-spectral curve.

3.5.2. R = E7. — The Dynkin diagram for the affine E7 root system is given in
Figure 2.1, in which we see that the canonical label is k = 3. For this case there
is a unique choice of minimal representation, corresponding to the 56-dimensional
fundamental representation having highest weight ω6. Choosing this representation
gives character relations which we include in the appendix for k = 1, . . . , 11. The
resulting family of spectral curves has fibres of genus 33, with a degree 3 morphism
to P1 inducing a 3 : 1 branched cover of the Riemann sphere with ramification profile
over ∞ ( µ=0︷ ︸︸ ︷

12, 6, 4,

µ=∞︷ ︸︸ ︷
12, 6, 4,

µ=±1︷︸︸︷
2

µ=±i︷︸︸︷
4
)
.

Hence,MLG
ω is an 8-dimensional submanifold in the 130-dimensional Hurwitz space

Hgω,nω , with gω = 33 and nω = (11, 5, 3, 11, 5, 3, 1, 1, 3, 3). The associated Newton
polygon is shown in Figure 3.2.

Figure 3.2. Newton polygon for the E7-spectral curve.

3.5.3. R = E8. — As mentioned, this case was thoroughly treated in [6], [7], and we
will provide only a brief presentation here. The Dynkin diagram for the affine E8 root
system is given in Figure 2.1, and the canonical label is, as for all the E-types, k = 3.
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In this case, the minimal, nontrivial, irreducible representation is the 248-dimensional
adjoint representation. Explicit character relations were given in [7], where their
derivation is explained in detail. It is shown in [6] that the resulting curve is of genus
128 and induces a cover of the Riemann sphere with ramification over∞ at µ = 0,∞,
in addition to second, third and fifth roots of unity, with ramification profile given in
[6, Eq. (5.34)]. Explicit flat coordinates and prepotential can also be found in [6]. The
resulting parent Hurwitz space is of dimension 518.

3.5.4. R = F4. — The Dynkin diagram for the affine root system of type F4 is
shown in Figure 2.1. In this case the canonical node is the one corresponding to the
fundamental weight ω2, ω = [0001]F4 , and ρω will be the 26-dimensional fundamental
representation, i.e., the irreducible representation of highest weight ω4. The character
relations (3.9) are then given as follows:

(3.40)

p
[0001]F4
1 = χ4,

p
[0001]F4
2 = χ1 + χ3,

p
[0001]F4
3 = χ2 + χ1χ4 − χ4,

p
[0001]F4
4 = χ2

1 + χ3χ1 − χ2
4 − χ2,

p
[0001]F4
5 = χ2

1χ4 − χ3
4 − χ1χ4 − 2χ2χ4 + χ3χ4 + χ4 + χ2

3 − χ2 + χ3,

p
[0001]F4
6 = χ3

1 − χ2
1 − χ2

4χ1 − 3χ2χ1 + χ3χ4χ1 + χ4χ1 − χ1 − χ3
4 + χ2

4 − χ2

− χ2χ4 + χ3χ4 + χ4,

p
[0001]F4
7 = χ1χ

3
4 − χ3

4 − χ1χ
2
4 + χ2χ

2
4 − 2χ1χ4 − 2χ2χ4 − 3χ1χ3χ4 + 2χ3χ4

+ χ4 + 2χ2
4 + χ2

1 − χ1 + χ1χ2 − χ2 + χ2
1χ3 − χ1χ3 − 2χ2χ3,

p
[0001]F4
8 = χ2

4χ
2
1 − χ3

1 − 2χ3χ
2
1 + χ2χ1 − χ3χ1 + χ2χ4χ1 − χ3χ4χ1 − χ4χ1

+ χ3
4 + χ3χ

3
4 − 2χ2

3 − χ2
4 − χ2 + 3χ2χ3 + χ3 − 3χ2

3χ4 + 2χ2χ4

− 2χ3χ4 + χ4,

p
[0001]F4
9 = χ5

4 − χ1χ
3
4 − 4χ3χ

3
4 − 2χ3

4 + 2χ1χ
2
4 + 4χ2χ

2
4 + χ1χ3χ

2
4

+ 2χ2
3χ4 − χ2 + χ1χ2χ4 + χ2

2 + 2χ1χ3χ4 + 3χ3χ4 − 2χ2
1 + χ2χ4

− 2χ1χ
2
3 − 2χ1χ2 + 2χ1χ4 − 2χ2

1χ3 − 2χ1χ3 − χ2χ3,

p
[0001]F4
10 = χ1χ

4
4 − 5χ3χ

3
4 − 2χ3

4 − 2χ2
1χ

2
4 + 3χ2χ

2
4 − 3χ1χ3χ

2
4 − χ3χ

2
4

+ 5χ2
3χ4 + χ5

4 − χ1χ
3
4 + 3χ1χ4 + χ1χ2χ4 + χ2χ4 + 3χ1χ3χ4

+ χ2χ3χ4 + 4χ3χ4 − χ4 + χ3
1 − χ2

2 + χ1χ
2
3 + 3χ2

3 − χ1χ2

+ χ2 + 2χ2
1χ3 + 3χ1χ3 − 3χ2χ3,

p
[0001]F4
11 = χ1χ

4
4 + χ2χ

3
4 − χ3χ

3
4 + χ3

4 − χ2
1χ

2
4 − 2χ1χ

2
4 − 2χ2χ

2
4

− 5χ1χ3χ
2
4 − 2χ2

4 + 2χ2
3χ4 − χ1χ4χ2χ4 + χ1χ3χ4 − 3χ2χ3χ4

+ χ3
3 + 3χ2

1 + χ2
2 + 4χ1χ

2
3 + 2χ2

3 + χ1 + 3χ1χ2 + 3χ2
1χ3

+ 5χ1χ3 + 2χ2χ3 + χ3,
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(3.40)

p
[0001]F4
12 = χ4

4 − χ5
4 − χ1χ

4
4 + 3χ1χ

3
4 + 2χ3χ

3
4 + 2χ2

1χ
2
4 + χ2

3χ
2
4 − χ1χ

2
4

− χ2χ
2
4 + χ3χ

2
4 − 5χ1χ4 − 4χ2χ4 − 5χ1χ3χ4 − 3χ2χ3χ4 + χ3χ4

+ χ4 − χ3
1 + 2χ2

2 − χ1χ
2
3 + 3χ1χ2 − 3χ1χ3 − 2χ2χ3 + χ1χ3χ

2
4,

p
[0001]F4
13 = 2χ4

4 − 2χ5
4 − 2χ1χ

4
4 + 4χ1χ

3
4 − 2χ2χ

3
4 + 6χ3χ

3
4 + 4χ2

1χ
2
4 + 2χ2

3χ
2
4

− 2χ1χ
2
4 − 2χ2χ

2
4 + 4χ1χ3χ

2
4 − 2χ2

4 − 2χ2
1χ4 − 4χ2

3χ4 − 2χ1χ4

+ 2χ1χ2χ4 − 4χ1χ3χ4 + 2χ2χ3χ4 − 4χ3χ4 − 2χ3
3 − 4χ2

1 + 2χ3
4

− 2χ2
2 − 4χ1χ

2
3 − 4χ2

3 − 4χ1χ2 − 4χ2
1χ3 − 4χ1χ3 − 2χ2χ3 + 2,

with p
[0001]F4
26−i = p

[0001]F4
i . Note that the above relations in the character ring follow

from those for R = E6 and ρ = (27) or ρ = (27) by folding; in particular MLG
F4,[0001]F4

sits inside MLG
[100000]E6

as the fixed locus of the involution w1 ↔ w5, w2 ↔ w4. The
generic fibre Cω4

w is a genus 4 hyperelliptic curve with ramification over ∞( µ=0︷︸︸︷
3, 6 ,

µ=∞︷︸︸︷
3, 6 ,

µ=ε3︷︸︸︷
3 ,

µ=ε23︷︸︸︷
3
)
,

where ε3 is a primitive third root of unity, and the associated Newton polygon is
shown in Figure 3.3. The extended affine F4-Frobenius manifold is thus realised as a
5-dimensional submanifold of the 36-dimensional Hurwitz space Hgω,nω , with gω = 4

and nω = (5, 5, 2, 2, 2, 2).

Figure 3.3. Newton polygon for the F4-spectral curve.

3.5.5. R = G2. — The Dynkin diagram for the affine G2 root system is given in
Figure 2.1, and the canonical label is k = 2. In this case, ρω1

= (7) is the 7-dimen-
sional fundamental representation which is the irreducible representation with highest
weight ω1. We obtain the character relations

(3.41) p
[10]G2
1 = χ1, p

[10]G2
2 = χ1 + χ2, p

[10]G2
3 = χ2

1 − χ2,

and p
[10]G2
7−i = p

[10]G2
i , hence

P[10]G2
(λ, µ;w0, w1, w2) ≡

3∑
i=0

(−1)ip
[10]G2
i (w1, w2 − λ/w0)µi(1− µ7−2i),
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and solving for λ

(3.42) λ =
w0

µ2(µ+ 1)2

(
µ6 + (1− w1)µ5 + (1 + w2)µ4 + (1− w2

1 + 2w2)µ3

+ (1 + w2)µ2 + (1− w1)µ+ 1
)
.

As was the case for R = F4, the same superpotential could be obtained from the
LG model of ω = [1000]D4

by the order three folding of the D4 Dynkin diagram,
and MLG

[10]G2
sits inside MLG

[1000]D4
as the fixed locus of the triality action sending

(w1, w3, w4) → (wε(1), wε(3), wε(4)) with ε ∈ S3. The outcome is a family of rational
functions in µ, with three poles at µ = 0,−1,∞, all of order two. This means that
the resulting Frobenius manifold is a 3-dimensional sublocus in the 7-dimensional
Hurwitz space H0,nω , with nω = (1, 1, 1).

4. Mirror symmetry

Having constructed MLG
ω for all Dynkin types, we now move on to proving Theo-

rem 3.6.
As in [16, Lect. 5], and with notation as in Section 3.1, define local coordinates κi

in a neighbourhood of ∞i by Lagrange inversion of λ(κ) = κni+1
i + O(1). Consider

then the following functions on Hgω,nω :

(4.1a) τi;α := Res
∞i

κ−αi logµ dλ, α = 1, . . . , ni,

(4.1b) τ ext
j := p.v.

∫ ∞j

∞0

d logµ, j = 1, . . . , `(nω),

(4.1c) τ res
k := Res

∞k

λ d logµ, k = 0, . . . , `(nω),

where the principal value, p.v., indicates subtraction of the divergent part in κi.

Lemma 4.1. — There exist complex numbers f (r)
i,α , qj, rk ∈ C and holomorphic func-

tions {ti : MLG
ω → C}i=1,...,`R+1 such that

(4.2) τ ext
j

∣∣
MLG
ω

= qjt`R+1, τi;α|MLG
ω

=

`R∑
r=1

f
(r)
i,α tr, τ res

k |MLG
ω

= rktk.

Moreover, (t1, . . . , t`R+1) are flat coordinates for the metric (4.8) on MLG
ω .

Proof. — Suppose first that R is any of the root systems A`, B`, C`, D` or G2. Then,
from the discussion of Sections 3.4 and 3.5.5, we have gω = 0, and MLG

ω ⊂ H0,nω is
a space of rational functions. The statement of the Lemma is then a specialisation of
[16, Th. 5.1], which in particular asserts that τi,α, τ ext

j and τ res
k are a complete set of

flat coordinates for the metric (3.5) on a genus zero Hurwitz space; and since MLG
ω

is a fixed-locus of an involution acting linearly in these coordinates, it is specified
by a linear condition of the form (4.2). For the remaining four exceptional cases, the
linear relations in (4.2) and the constancy of the Gram matrix of the metric (3.15) in
the chart (t1, . . . , t`R+1) follow from a direct residue calculation from (4.1a)–(4.1c),
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and from making use of the explicit form of the superpotential from (3.11) for each
Dynkin type; we omit the details here.(8) �

Lemma 4.2. — Let (t1, . . . , t`R+1) be flat coordinates for (3.15) as in Lemma 4.1.
Then t`R+1 = logw0/dk and, for all i = 1, . . . , `R,

ti(w0, . . . , w`R) ∈ wdi/dk0 Z[w1, . . . , w`R ].

Moreover, the change of variables w 7→ t(w) has a polynomial inverse

wi(t1, . . . , t`R+1) ∈ Q[t1, . . . , t`R+1, e
t`R+1 ].

Proof. — A direct calculation from (4.1a)–(4.1c), using as above the explicit form of
(3.11), shows that the flat coordinates (t1, . . . , t`R+1) are related (up to normalisation)
to (w0, . . . , w`R) as

ti = w
di/dk
0 ti(w), t`R+1 =

logw0

dk
,

where ti(w) are explicit integral polynomials in (w1, . . . , w`R). Moreover, it can be
verified directly that

∂wj ti =0 if dj > di,

degwj ti =1 if dj = di,

implying that the inverse function t 7→ w(t) is a polynomial in (t1, . . . , t`R , e
t`R+1)

with rational coefficients. �

The previous two Lemmas put us in a position to prove Theorem 3.6.

Proof of Theorem 3.6. — Consider the change-of-variables

wi(x1, . . . , x`R) = χi(e
h) =

∑
ω′∈Γ(ρi)

`R∏
j=1

eω
′
jxj , i = 1, . . . `R.

Further identifying

(4.3) w0 = ecωx`R+1 ,

for cω ∈ C?, extends this to a local analytic isomorphism sending

MDZ
R 3 (x1, . . . , x`R ;x`R+1) 7−→ (w0;w1, . . . , w`R) ∈MLG

ω .

We shall now prove that this is, in fact, an isomorphism of Frobenius structures upon
checking the four defining properties, (DZ-I) through (DZ-IV), of the reconstruction
Theorem 2.3.

(DZ-I) and (DZ-II). Define holomorphic vector fields e, E ∈ Γ(MLG
ω , TMLG

ω ) as

(4.4) e :=
∂wk
w0

, E := w0∂w0
.

(8)All calculations can be made available to the interested reader upon request.
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Then, the one-parameter group of isomorphisms generated by the horizontal lift δ(µ)
e

(resp. δ(µ)
E ) to the universal curve acts on the superpotential by translation (resp.

conformal transformations) on the superpotential. To see this, note that, by (3.11),

(4.5)
w0 7−→ aw0  λ 7−→ aλ,

wk 7−→ wk + b/w0  λ 7−→ λ+ b.

Since the unit and Euler vector field (3.3) of a Hurwitz–Frobenius manifold are char-
acterised as the generators of the affine action (3.1) on the superpotential, (4.5) iden-
tifies e with the unit and E with the Euler vector field of MLG

ω . To verify (DZ-I) and
(DZ-II), it then remains to check that the expressions in (4.4) coincide with those for
the respective vector fields of MDZ

R . A simple calculation from Lemma 4.2 shows that

e =
1

w0

`R+1∑
i=1

∂ti
∂wk

∂ti = ∂tk ,

E = w0∂w0 = w0

`R+1∑
i=1

∂ti
∂w0

∂ti =
∂t`R+1

dk
+

`R∑
i=1

diti
dk

∂ti ,

thereby matching the expression of the unit and the Euler vector fields in Theorem 2.3.
(DZ-III). Let us consider now the Gram matrix of the intersection pairing on MLG

ω

in the x-chart. Consider first the argument of the residues in (3.17),

(4.6) Υij(p) :=
δ

(µ)
∂xi
λ δ

(µ)
∂xj
λ

λµ2∂µλ
dµ(p),

so that
γ(∂xi , ∂xj ) =

∑
`

Res
p=pcr`

Υij(p).

From (4.6), we deduce that the pole structure of Υij(p) is as follows:
(1) it has simple poles at the critical points {pcr

` }, for which dλ(pcr
i ) = 0;

(2) it has at most simple poles at λ(p) = 0, and only when both i, j 6= `R +1:
indeed, from (4.3) we have that δ(µ)

∂x`R+1
λ = cωλ, thereby cancelling the zeroes

at the denominator when either i or j = `R + 1;
(3) it has at most simple poles at µ(p) = 0 (for which λ(p) = ∞: see Re-

mark 3.5) and only when i = j = `R + 1. To see why, notice that locally at a
point p′ near µ(p) = 0 we have

λ(p′) = ecωx`R+1µ(p′)−qp(rp + O(µ)),

where q(p) ∈ Z>0 and r(p) ∈ C. Then, the denominator in (4.6) has a leading
Puiseux asymptotics in µ of the form µ1−2qp , resulting from the combination of
the order qp divergence of λ(µ), the order qp + 1 divergence of ∂µλ(µ), and the
double zero of µ2. For the numerator, we have δ(µ)

∂xi
λ ∼ µδi,`R+1−qp , since r(p) is

w-independent by Proposition 3.4, so that

ordµ(p)=0 Υij = 1− δi,`R+1 − δj,`R+1;
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(4) superficially, there may be further poles to be expected at the critical
points {qcr

m} of the µ-projection, dµ(qcr
m) = 0, that is, where the Ehresmann

connection (3.4) induced by the µ-foliation is singular and δ
(µ)
∂xi
λ possibly de-

velops a pole. However these singularities are offset by a vanishing of the same
order of dµ/∂µλ, so that

(4.7) ordqcrm Υij = 0.

Based on the above, we turn the contour around and equate the sum of residues
at the critical points in (3.17) to a much more manageable sum of residues at poles
and zeros of µ and λ. When i = j = `R + 1, we only have poles at µ = 0, and

γ(∂x`R+1
, ∂x`R+1

) = Nω
∑

µ(p)=0

Res
p′=p

Υ`R+1,`R+1(p′)

= Nωc
2
ω

∑
µ(p)=0

Res
p′=p

λ

µ2∂µλ
dµ(p′)

= Nωc
2
ω

∑
µ(p)=0

1

ordp λ
= −

∑
i:µ(∞i)=0

Nωc
2
ω

(nω)i
.

Setting cω =
√
dk (−Nω

∑
i:µ(∞i)=0 1/(nω)i)

−1/2 gives γ(∂x`R+1
, ∂x`R+1

) = dk.
Suppose now that j = `R + 1, i < `R + 1. Our analysis above shows that Υij is

regular outside the critical locus of λ, and therefore

γ(∂xi , ∂x`R+1
) = γ(∂x`R+1

, ∂xi) = δi,`R+1dk.

Finally, let’s look at i, j < `R + 1. In this case, outside {pcr
` }, Υij has only simple

poles at the zeroes of λ, i.e., when

0 = Pω(0, µ) = Qred
ω (µ) =

∏
06=ω′∈Γ(ρω)

(µ− eω
′(x)) ⇐⇒ µ = eω

′(x), ω′ ∈ Γ(ρω),

where we used the shorthand notation ω′(x) :=
∑`R
n=1 ω

′
nxn. The evaluation of the

residue at (λ, µ) = (0, eω
′(x)) gives

(4.8)

Res
µ=eω′(x)

Υij =
δ

(µ)
∂xi
λ δ

(µ)
∂xi
λ

µ2(∂µλ)2

∣∣∣
µ=eω′(x)

=
∂xiQ

red
ω ∂xjQ

red
ω

µ2(∂µQred
ω )2

∣∣∣
µ=eω′(x)

=
e2ω′(x)ω′iω

′
j

∏
ω′′,ω′′′ 6=ω′

(
eω
′(x) − eω

′′(x)
)(

eω
′(x) − eω

′′′(x)
)

e2ω′(x)
∏
ω′′,ω′′′ 6=ω′

(
eω′(x) − eω′′(x)

) (
eω′(x) − eω′′′(x)

)
= ω′iω

′
j ,
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where the second equality makes use of the implicit function theorem. Summing
over ω′ gives

(4.9)

γ(∂xi , ∂xj ) = Nω
∑

ω′∈Γ(ρω)

ω′iω
′
j = Nω Tr(ρω(hi)ρω(hj))

= NωC2(ρω)(KR)ij

= Nω
(ω, ω + 2w) dimC ρω

dimC g
(KR)ij .

In (4.9) the first equality is immediate; the second reflects the fact that the re-
sulting trace gives a non-degenerate Ad-invariant bilinear form on h?R, hence pro-
portional to the Killing pairing since g is simple; and the final step identifies the
proportionality factor with the corresponding quadratic Casimir eigenvalue for the
representation ρω in the appropriate normalisation (see e.g. [26, Lect. 25.1]). Picking
Nω := −dimC g/(ω, ω + 2w) dimC ρω concludes the identification of (3.17) with the
intersection pairing in Theorem 2.3.

(DZ-IV). The final missing piece to invoke the reconstruction theorem, Theo-
rem 2.3, is to prove the quasi-polynomiality of the prepotential of MLG

ω . Consider
the change-of-variables(9)

(4.10) vi :=

{
logw0 if i = 0,

wi otherwise,
and define

Ξijk(p) := −Nω
δ

(µ)
∂vi
λ δ

(µ)
∂vj
λ δ

(µ)
∂vk

λ

µ2∂µλ
dµ(p).

Then the symmetric (0,3) tensor (3.16) in the v-chart reads

(4.11) c(∂vi , ∂vj , ∂vk) =
∑
`

Res
p=pcr`

Ξijk(p).

The same analysis as the one we carried out to verify [DZ-III] reveals that Ξijk has
poles at the critical points (i) and the poles (iii) of λ. Additionally, it has poles at the
critical points (iv) of the µ-projection, due to the singularities of the derivation δ(µ)

X

in (3.4). As noted in (4.7), in the case of the intersection pairing, the poles of δ(µ)
∂xi
λ

and ∂µλ in (4.6) were cancelling out between the numerator and denominator in
the Puiseux expansion of Υij(p) near qcr

m. On the other hand, the additional factor
containing δ(µ)

∂wk
λ in the numerator of (3.16) may give rise to a pole with non-vanishing

residue for Ξijk(p) at qcr
m.

(9)This might look like an unnecessary piece of trivial additional notation at this stage: it just
amounts to replacing w0-derivatives of the superpotential with logarithmic w0-derivatives. The reader
will forgive us as this will help making the discussion of polynomiality completely manifest at the
end of the argument: indeed, while components c(∂wi , ∂wj , ∂wk ) of the c-tensor in the w-chart are
Laurent monomials (with coefficients in Q[w1, . . . , w`R ]) in w0 with exponent 2− δi0 − δj0 − δk0,
and in particular have negative power for i = j = k = 0, the components c(∂vi , ∂vj , ∂vk ) of the
c-tensor in the v-chart will always be elements of e2v0Q[v1, . . . , v`R ] (see (4.14)).
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To compute (4.11) we determine individually the residues of Ξijk(p) using the
known expression of Pω(λ, µ) from (3.11). By Proposition 3.4, the µ-coordinate of the
poles of λ have simple v-independent expressions, which are either µ = 0,∞, or a root
of unity (see (3.14)). The calculation of the corresponding residues is straightforward,
and we find
(4.12) Res

p=∞r

Ξijk(p) ∈ e2v0Q[v1, . . . , v`R ], r = 1, . . . , `(nω).

On the other hand, the µ-coordinates of the critical points {pcr
` } of λ (resp. {qcr

m} of µ)
are given by the roots of Discrµ(Pω)(µ) (resp. Discrλ(Pω)(µ)). When degλ Pω > 1,
these are both high degree polynomials in µ with v-dependent coefficients, and there-
fore µ(pcr

` ) and µ(qcr
m) are given by complicated (algebraic) hypergeometric functions

of (ev0 , v1, . . . , v`R+1). Since Ξijk has in general non-vanishing residues at p = qcr
m,

turning the contour around in the sum in (4.11) will pick up some intricate hyper-
geometric contributions from these points, making it difficult to provide a manifest
proof of the polynomiality of their sum. One exception however is when i = 0: since
δ

(µ)
∂v0
λ = λ, the same count of the order of divergence as in (4.7) shows that

(4.13) ordqcrm Ξ0jk = 0 =⇒ Res
p=qcrm

Ξ0jk = 0.

In this case, the residue theorem implies that, closing the contour around the com-
plement of {pcr

` }, (4.11) equates to a sum of residues coming only from the poles of λ,

(4.14) c(∂v0 , ∂vj , ∂vk) = −
∑
r

Res
p=∞r

Ξ0jk(p) ∈ e2v0Q[v1, . . . , v`R ],

where we used (4.12). In the same vein, we also obtain

(4.15) η(∂vj , ∂vk) = −
∑
r

Res
p=∞r

1

λ
Ξ0jk(p) ∈ ev0Q[v1, . . . , v`R ].

To compute the remaining components c̃ijk(v) := c(∂vi , ∂vj , ∂vk), we use the associa-
tivity of the Frobenius product in the v-chart:

(4.16)
∑
k,`

(
c̃ijkη̃

k`c̃0`m − c̃imkη̃k`c̃0`j
)

= 0,

where η̃k` ∈ e−v0Q(w1, . . . , w`R) is the inverse of the Gram matrix of (4.15). The set
of equations (4.16) give an a priori overconstrained inhomogeneous linear system for
the unknowns c̃ijk(v) with all i, j, k 6= 0. It is not at all obvious, in principle, that a
unique solution of (4.16) exists; and even so, that such a solution is a polynomial (as
opposed to rational) function of (ev0 , v1, . . . , v`R). That this is the case, however, can
be shown from a direct calculation from (4.14)–(4.15), which gives

c(∂vi , ∂vj , ∂vk) ∈ e2v0Q[v1, . . . , v`R ].

Using Lemma 4.2 together with (4.10), we finally deduce that

(4.17) c(∂ti , ∂tj , ∂tk) =
∂FR

∂ti∂tj∂tk
∈ Q[t1, . . . , t`R+1, e

t`R+1 ].

The claim now follows upon invoking Theorem 2.3. �
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Remark 4.3. — The explicit form of (3.11) was crucially used in the computation of
(4.14)–(4.15), as well as in determining the flat coordinates in Lemma 4.2. Despite the
disadvantage of having to carry out a separate analysis of each of the seven Dynkin
series, an immediate spin-off of this method is that closed-form polynomial expres-
sions for the flat coordinates and, from (4.17), the prepotential are rather powerfully
produced from straightforward residue computations. We will illustrate this in detail
in the next Section.

4.1. Examples. — The construction of closed-form flat frames for η and prepoten-
tials in all Dynkin types does not follow directly from the original Dubrovin–Zhang
construction of the flat pencil.(10) One of the advantages of the mirror formulation in
Theorem 3.6 is that these can now be easily computed using the Landau–Ginzburg
formalism.

4.1.1. Classical root systems

Example 4.1 (R = B3). — From (3.21) we have the superpotential

λB3
=

w0

µ2(µ+ 1)2

(
µ6 + 1− (µ5 + µ)(w1 − 1) + (µ4 + µ2)(−w1 + w2 + 1)

+ µ3(−w2
3 + 2w2 + 2)

)
,

which gives flat coordinates

t4 =
logw0

2
, t1 = w

1/2
0 (w1 + 1), t3 = w

1/2
0 w3, t2 = w0(w1 + w2 + 2).

We obtain the prepotential for B3 to be

FB3
= t4t

2
2 +

1

2
t21t2 + t23t2 −

1

48
t41 −

1

24
t43 + 2t1t

2
3et4 + t21e

2t4 + 2t23e2t4 +
1

2
e4t4 ,

which is seen to be equivalent to the free energy in [21, Ex. 2.7] by F 7→ F/2.

Example 4.2 (R = B4). — For B4, (3.21) is

λB4
=

w0

µ3(µ+ 1)2

(
µ8 + 1− (µ7 + µ)(w1 − 1) + (µ6 + µ2)(−w1 + w2 + 1)

− (µ5 + µ3)(w1 − w2 + w3 − 1) + µ4(w2
4 − 2w1 − 2w3)

)
,

which gives flat coordinates

t5 =
log w0

3
, t1 = w

1/3
0 (w1 + 1), t2 = w

1/2
0 w4, t4 = w

2/3
0 (4w1 − w2

1 + 6w2 + 11),

t3 = w0(2w1 + w2 + w3 + 2).

(10)A priori one could try to construct a quasi-homogeneous polynomial ansatz for the prepoten-
tial, impose the associativity of the Frobenius product, and solve for the coefficients. This typically
results in a large system of non-linear equations, owing to the non-linearity of the WDVV equations,
whose solution is already unviable e.g. for R = E6. The proof of Theorem 3.6 shows that the Landau–
Ginzburg formulas reduce this to an explicit calculation of residues and a relatively small-rank, linear
problem.
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In this case, the resulting prepotential is given by

FB4
=

1

1944
t41t4 −

1

9720
t61 −

1

648
t21t

2
4 + +

1

9
t1t4t3 −

1

24
t42 + t22t3 +

1

1944
t34

+ t5t
2
3 +

1

3
t21t

2
2et5 +

1

3
t22t4et5 +

1

36
t41e2t5 +

1

18
t21t4e2t5 + 2t1t

2
2e2t5

+
1

36
t24e2t5 + 2t22e3t5 +

1

2
t21e4t5 +

1

3
e6t5 .

Example 4.3 (R = C3). — Here, the superpotential is given by

λC3
=
w0(µ6 + 1− (µ5 + µ)w1 + (µ4 + µ2)(w2 + 1)− µ3(w1 + w3)

µ3
,

which leads to the following flat coordinates:

t4 =
log w0

3
, t1 = w

1/3
0 w1, t2 = w

2/3
0 (w2

1 − 6(w2 + 1)), t3 = w0(w1 + w3).

In this case, the prepotential is

FC3
= t4t

2
3 −

1

9
t1t2t3 −

1

9720
t61 −

1

1944
t41t2 −

1

648
t21t

2
2 −

1

1944
t32

+
1

36
t41e2t4 − 1

18
t21t2e2t4 +

1

36
t22e2t4 +

1

2
t21e4t4 +

1

3
e6t4 ,

which is the same as the one found in Example 2.8 in [21] after letting F 7→ F/2, and
t2 7→ −6t2.

Example 4.4 (R = D4). — For ` = 4, (3.23) becomes

λD4
=
w0(µ8 − w1(µ7 + µ) + w2(µ6 + µ2) + (w1 − w3w4)(µ5 + µ3) + 1)

µ2(µ2 − 1)2
,

which has poles at µ = 0,∞, 1,−1, all of order 2. The resulting flat coordinates are

t5 =
log w0

2
, t1 = w

1/2
0 w1, t3 = w

1/2
0 (w3 + w4),

t4 = w
1/2
0 (w3 − w4), t2 = w0(w2 + 2),

which leads to the prepotential

FD4
= t5t

2
2 +

1

4
t23t2 +

1

4
t24t2 −

1

48
t41 +

1

2
t21t2 −

1

384
t43 −

1

64
t23t

2
4 −

1

384
t44

+
1

2
t1t

2
3et5 − 1

2
t1t

2
4et5 + t21e2t5 +

1

2
t23e2t5 +

1

2
t24e2t5 +

1

2
e4t5 .

Example 4.5 (R = D5). — For ` = 5, (3.23) is given by

λD5
=

w0

µ3(µ2 − 1)2

(
µ10 − w1(µ9 + µ) + w2(µ8 + µ2)− w3(µ7 + µ3)

+ (w2 − w4w5 + 1)(µ6 + µ4)− (w2
4 + w2

5 − 2w1 − 2w3)µ5 + 1
)
,
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which has poles at µ = 0, ∞, 1, and −1, of orders 3, 3, 2, and 2, respectively. We can
compute the flat coordinates

t6 =
log w0

3
, t1 = w

1/3
0 w1, t4 = w

1/2
0 (w4 − w5), t5 = w

1/2
0 (w4 + w5),

t2 = w
2/3
0 (w2

1 − 6(w2 + 2)), t3 = w0(2w1 + w3),

which give the prepotential

FD5
= − t61

9720
+

1

36
e2t6t41 −

t2t
4
1

1944
+

1

2
e4t6t21 −

1

648
t22t

2
1 −

1

12
et6t24t

2
1

+
1

2
e2t6t24t1 +

1

2
e2t6t25t1 −

1

9
t2t3t1 +

e6t6

3
− t44

384
− t45

384
− t32

1944

− 1

2
e3t6t24 +

1

12
et6t2t

2
4 +

1

4
t3t

2
4 +

1

2
e3t6t25 −

1

64
t24t

2
5 −

1

12
et6t2t

2
5

+
1

12
et6t25t

2
1 −

1

18
e2t6t2t

2
1 +

1

4
t3t

2
5 +

1

36
e2t6t22 + t23t6.

4.1.2. Exceptional root systems

Example 4.6 (R = E6). — For the exceptional cases, we find expressions for λ near
any ramification point by Puiseux expansions. By doing so, we obtain the following
flat coordinates for R = E6,

t1 = w
1/3
0 w1, t2 = w

2/3
0 (w2

1 − 6w2 − 12w5), t3 = w0(2w1w5 + w3 + 3w6 + 3),

t4 = w
2/3
0 (−w2

5 + 12w1 + 6w4), t5 = w
1/3
0 w5, t6 = w

1/2
0 (w6 + 2), t7 =

log(w0)

6
,

and the corresponding prepotential is given by

FE6
= − 1

19440
t61 +

1

72
e2t7t5t

4
1 −

1

3888
t2t

4
1 +

1

6
e6t7t31 +

1

6
e3t7t6t

3
1 +

5

18
e4t7t25t

2
1

+
1

36
et7t25t6t

2
1 +

1

36
e4t7t4t

2
1 +

1

36
et7t6t4t

2
1 −

1

36
e2t7t5t2t

2
1

+
1

72
e2t7t45t1 +

1

72
e2t7t24t1 +

1

2
e8t7t5t1 + e5t7t5t6t1 +

1

36
e2t7t25t4t1

− 1

6
e3t7t6t2t1 −

1

19440
t65 −

1

96
t46 +

1

6
e6t7t35 +

1

3
e3t7t36 +

1

3888
t34

− 1

3888
t32 +

1

2
e6t7t26 +

1

72
e2t7t5t

2
2 +

1

2
t7t

2
3 +

1

6
e3t7t35t6 +

1

3888
t45t4

+
1

6
e3t7t5t6t4 −

1

36
e4t7t25t2 −

1

36
et7t25t6t2 −

1

36
e4t7t4t2 −

1

36
et7t6t4t2

+
1

4
t26t3 +

1

18
t5t4t3 +

1

2
e2t7t5t

2
6t1 +

1

12
e12t7 − 1

1296
t22t

2
1

− 1

18
t2t3t1 −

1

1296
t25t

2
4.
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Example 4.7 (R = E7). — Similarly to the E6-case, by taking Puiseux expansions of
the spectral curve, we obtain the following flat coordinates

t8 =
log(w0)

12
, t6 = w

1/4
0 w6, t1 = w

1/3
0 (w1 + 2), t7 = w

1/2
0 (2w6 + w7),

t5 = w
1/2
0 (−w2

6 + 8w1 + 4w5 + 12), t2 = w
2/3
0 (−w2

1 + 26w1 + 6w2 + 12w5 + 26),

t4 = w
3
4
0 (5w3

6 + 24(6w1 − w5 + 21)w6 + 96w4 + 288w7),

t3 = w0(3w2
1 + 2w1(w5 + 8) + 3w2

6 + 3w6w7 + 2w2 + w3 + 7w5 + 14).

The prepotential for E7 takes the form

FE7
=− 1

4128768
t86 +

1

18432
49e6t8t66 +

1

18432
e2t8t1t

6
6 +

1

294912
t5t

6
6 +

1

384
e3t8t7t

5
6

+
19

192
e12t8t46 +

5

288
e4t8t21t

4
6 −

1

49152
t25t

4
6 +

1

8
e8t8t1t

4
6 +

1

1536
13e6t8t5t

4
6

+
1

576
e4t8t2t

4
6 +

1

4
e9t8t7t

3
6 +

1

576
et8t21t7t

3
6 +

25

96
e5t8t1t7t

3
6 +

7

384
e3t8t7t5t

3
6

+
1

9216
e6t8t4t

3
6 +

1

9216
e2t8t1t4t

3
6 +

1

147456
t5t4t

3
6 +

1

6
e18t8t26 +

1

288
e2t8t41t

2
6

+
1

24576
t35t

2
6 +

5

8
e10t8t21t

2
6 +

5

8
e6t8t27t

2
6 +

1

8
e2t8t1t

2
7t

2
6 +

5

512
e6t8t25t

2
6

+
1

288
e2t8t22t

2
6 −

1

589824
t24t

2
6 +

1

2
e14t8t1t

2
6 +

1

32
e12t8t5t

2
6 +

1

24
e4t8t21t5t

2
6

+
1

144
e2t8t21t2t

2
6 +

1

24
e6t8t1t2t

2
6 +

1

96
e4t8t5t2t

2
6 +

1

384
e3t8t7t4t

2
6 +

1

3
e3t8t37t6

+
1

6
e3t8t31t7t6 +

7

6
e7t8t21t7t6 + e11t8t1t7t6 +

1

4
e9t8t7t5t6 +

1

96
et8t21t7t5t6

+
1

6
e7t8t7t2t6 +

1

6
e3t8t1t7t2t6 +

1

96
et8t7t5t2t6 +

1

576
e4t8t21t4t6 −

1

49152
t25t4t6

+
1

1536
e2t8t1t5t4t6 +

1

576
e4t8t2t4t6 +

1

384
t4t3t6 +

1

24
e24t8 − 1

19440
t61

− 1

96
t47 −

1

49152
t45 +

1

6
e12t8t31 +

1

384
e6t8t35 +

1

3888
t32 +

1

4
e16t8t21 +

1

2
e12t8t27

+ e8t8t1t
2
7 +

1

64
e12t8t25 +

1

64
e4t8t21t

2
5 +

1

72
e8t8t22 −

1

1296
t21t

2
2 +

1

72
e4t8t1t

2
2

+
1

18432
e6t8t24 +

1

18432
e2t8t1t

2
4 +

1

294912
t5t

2
4 +

1

2
t8t

2
3 +

1

72
e4t8t51

+
1

8
e10t8t21t5 +

1

8
e6t8t27t5 +

1

8
e2t8t1t

2
7t5 +

1

3888
t41t2 +

1

36
e4t8t31t2 +

1

36
e8t8t21t2

+
1

144
e2t8t21t5t2 +

1

24
e6t8t1t5t2 +

1

576
et8t21t7t4 +

1

96
e5t8t1t7t4 +

1

384
e3t8t7t5t4

+
1

4
t27t3 +

1

128
t25t3 +

1

18
t1t2t3 −

1

2949120
t4t

5
6 +

1

1536
e2t8t1t5t

4
6 +

1

576
et8t7t2t

3
6

+
5

24
e6t8t31t

2
6 +

1

576
et8t7t2t4 +

1

6
e4t8t27t2 +

1

24
e6t8t31t5 +

1

288
e2t8t41t5

+
1

288
e2t8t5t

2
2 +

2

3
e4t8t21t

2
7 +

5

36
e8t8t41 +

1

1536
e6t8t5t4t6 +

5

16
e5t8t1t7t5t6

+
1

64
e3t8t7t

2
5t6 +

1

512
e2t8t1t

2
5t

2
6 +

1

8
e8t8t1t5t

2
6.
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Example 4.8 (R = F4). — In this case we obtain flat coordinates

t5 =
1

6
log(w0), t4 = w

1/3
0 (w4 + 1), t3 = w

2/3
0 (−w2

4 + 16w4 + 6w3 + 6w1 + 11),

t2 = w0(2w2
4 + 6w4 + w4w1 + w3 + w2 + 4w1 + 5), t1 = w

1/2
0 (w4 + w1 + 2).

The resulting prepotential is

FF4
=− 1

9720
t64 +

1

36
e2t5t54 +

5

18
e4t5t44 +

1

36
et5t1t

4
4 +

1

432
t3t

4
4 +

1

3
e6t5t34 +

1

3
e3t5t1t

3
4

+
1

4
e2t5t3t

3
4 +

1

2
e8t5t24 +

1

2
e2t5t21t

2
4 −

1

32
t23t

2
4 + e5t5t1t

2
4 +

1

4
e4t5t3t

2
4

+
9

16
e2t5t23t4 +

3

2
e3t5t1t3t4 +

1

2
t3t2t4 +

1

12
e12t5 − 1

96
t41 +

1

3
e3t5t31 +

3t33
64

+
9

16
e4t5t23 +

9

16
et5t1t

2
3 +

1

2
t5t

2
2 +

1

4
t21t2 +

1

2
e6t5t21 +

1

4
et5t1t3t

2
4.

Example 4.9 (R = G2). — For G2, we obtain flat coordinates

(4.18) t3 =
log(w0)

6
, t1 = w

1/2
0 (w1 + 1), t2 = w0(2w1 + w2 + 2).

In this case, the prepotential takes the form

(4.19) FG2
=

1

2
t22t3 +

1

4
t2t

2
1 −

1

96
t41 +

1

3
t31e3t3 +

1

2
t21e6t3 +

1

12
e12t3 ,

which matches exactly the expression found in [21, Ex. 2.4].

4.2. Non-minimal irreducible representations. — It is argued in [6], based on the
isomorphism of Toda flows on Prym–Tyurin varieties associated to different repre-
sentations, [38, 39], that the Frobenius manifold obtained from the construction of
Section 3.2 is independent of the choice of highest weight ω.

Let us verify this explicitly for R = G2. In this case picking ω = ω2 gives the
second smallest-dimensional non-trivial irreducible representation of G2, which is the
14-dimensional adjoint representation ρω2 = g2. By the same method of the previous
section we obtain

p
[01]G2
0 = 1,

p
[01]G2
1 = χ2,

p
[01]G2
2 = χ3

1 − χ2
1 − χ1(2χ2 + 1),

p
[01]G2
3 = χ4

1 − χ3
1 − χ2

1(3χ2 + 1) + χ1 + 2χ2
2 + χ2,

p
[01]G2
4 = χ3

1(χ2 − 1)− χ2
1(χ2 − 1)− χ1(2χ2

2 − χ2 − 1)− χ2
2 + χ2,

p
[01]G2
5 = χ5

1 − 2χ4
1 − 5χ3

1χ2 + χ2
1(3χ2 + 2) + χ1(6χ2

2 + 5χ2 − 1) + χ3
2 + 2χ2

2,

p
[01]G2
6 = χ4

1 − 3χ3
1χ2 + χ2

1(χ2
2 − χ2 − 2) + χ1χ2(4χ2 + 3) + 2χ2

2 + χ2,

p
[01]G2
7 = + 4χ4

1 + 2χ3
1(3χ2 + 1) + 2χ2

1(χ2
2 − 2χ2 − 3)

− 2χ1χ2(4χ2 + 3)− 2χ3
2 − 6χ2

2 + 2− 2χ5
1,
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and p
[01]G2
i = p

[01]G2
14−i by reality of the adjoint representation. The characteristic poly-

nomial (3.8) then factorises as

Pred
[01]G2

= (µ− 1)2PG2,shortPG2,long,

with the three factors corresponding to the three irreducible Weyl orbits of the adjoint
representation associated to the zero, short, and long roots of G2:

PG2,short = Pred
[10]G2

,

PG2,long = µ6 + µ5 (w1 − w2 + 1) + µ4
(
w3

1 − 3w2w1 − w1 − 2w2 + 1
)

+ µ3
(
2w3

1 − w2
1 − 4w2w1 − 2w1 − w2

2 − 4w2 + 1
)

+ µ2
(
w3

1 − 3w2w1 − w1 − 2w2 + 1
)

+ µ (w1 − w2 + 1) + 1.

For any w, the curve C(1)

w = {PG2,long = 0} is a copy of P1, and the λ-projection has
ramification profile ( µ=0︷︸︸︷

1, 2 ,

µ=∞︷︸︸︷
1, 2

)
.

The embedding ι[01]G2
: MLG

[01]G2
↪→ H0,(0,1,0,1) gives the same flat coordinates (4.18)

as for the case ω = [10]G2
, and up to scaling the prepotential coincides with the

prepotential (4.19), as expected.

4.3. Non-canonical Dynkin marking. — In [6], it was proposed that the family of
Frobenius algebras obtained in (3.11) through the shift of wj → wj+δijλ/w0 for any i
should give the Frobenius structure corresponding to Dynkin node αi. Theorem 3.6
shows that this is the case for i = k, and this proposal is consistent with the analysis
of the generalised type-A mirrors of [21]. However we now show that the conjecture
is false in this form at the stated level of generality. Considering the case R = G2,
we see that shifting w1 instead of w2 in (3.41) yields

(4.20) P[10]G2
,i=1 =

( λ
w0

)2

µ3 +
λ

w0
(−µ5 − 2w1µ

3 − µ− 2) + µ6

+ (µ5 + µ)(1− w1) + (µ4 + µ2)(w2 + 1)− µ3(w2
1 − 2w2 − 1) + 1.

By computing the metric η =
∑
ij η̃ij dwi dwj we get

(4.21) η̃ij =


8w1 + 1

4w0
1 0

1 0 0

0 0 0

 ,

which is clearly a singular matrix. Hence, (4.20) cannot define a Frobenius manifold
structure, and the conjecture fails in this generality.

Remark 4.4. — Opening for allowed changes in the primary differential, i.e., scalings
and translations of d logµ which are type I (Legendre) transformations [16], under
which the intersection form is invariant, does not resolve the nondegeneracy, and
neither does attempting to change the pole structure manually akin to that of (3.25).
Thus, the problem of finding Frobenius manifolds associated to non-canonical nodes
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for exceptional groups is still open, and indeed even the existence of non-canonical
Frobenius manifold structures for DZ-manifolds of exceptional types is, at present,
unknown.

5. Applications

5.1. Topological degrees of Lyashko–Looijenga maps. — The semi-simple locus of
a generically semi-simple, n-dimensional Frobenius manifold M is topologically a cov-
ering of finite multiplicity over a quotient by Sn of the complement of their discrimi-
nant, with covering map

(5.1)
LL : M −→ (Cn r DiscrM)/Sn

t 7−→ {e1(u(t)), . . . , en(u(t))}
assigning to t ∈M the unordered set of its canonical coordinates in the form of their
elementary symmetric polynomials ei(u1, . . . , un). When M has a Landau–Ginzburg
description as a holomorphic family of meromorphic functions, the application LL is
the classical Lyashko–Looijenga (LL) mapping, sending a meromorphic function to
the unordered set of its critical values.

As anticipated in Section 1.1.3, a direct corollary of Theorem 3.6 is the computa-
tion of the degree of the LL map of MLG

ω ' MDZ
R . The calculation of the LL-degree

can be tackled combinatorially through the enumeration of certain embedded graphs
[32, §1.3.2], which unfortunately proves to be intractable for a general stratum of a
Hurwitz space of arbitrary genus and ramification profile. In the case of deg LL(MLG

ω ),
however, its realisation as a conformal Frobenius manifold allows to bypass the prob-
lem altogether by the use of the quasi-homogeneous Bézout theorem. To this aim,
note that

(5.2) det(z− (E(t)·)) =

`R+1∏
i=1

(z− ui(t)) =

`R+1∑
j=0

(−1)jej(u1(t), . . . , u`R+1(t))z`R+1−j .

Setting T := et`R+1 , it follows from Theorems 2.3 and 3.6 that the LL-map (5.1) is
polynomial in (t1, . . . , t`R+1, T ) since both the product and the Euler vector field are
in (5.2). Moreover, it follows from the definition (3.2) of the quantum product in
canonical coordinates that the canonical idempotents ∂ui have weight −1 under the
Euler scaling, meaning that ei(u) is quasi-homogeneous of degree i. We can then avail
ourselves of the graded generalisation of Bézout’s theorem (see e.g. [32, Th. 3.3]).

Theorem 5.1. — Let F : An → An be a finite morphism induced by a quasi-
homogeneous map F∗ : C[y1, . . . yn] → C[x1, . . . , xn] with degrees pi (resp. qi) for yi
(resp. xi) for i = 1, . . . , n. Then

degF =

n∏
i=1

pi
qi
.

An immediate consequence of Theorems 2.3, 3.6 and 5.1 is the following

Corollary 5.2. — The degree of the LL-map of the Hurwitz stratum MLG
ω is

(`R + 1)!(ωk, ωk)`R∏`R
j=1(ωj , ωk)

.
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We collect in Table 5.1 the calculation of the degrees for the minimal choices of
weight ω. Our expectation that MLG

ω ' MDZ
R for any of the infinitely many choices

of dominant weight ω ∈ Λ+
w(R) implies that the same formula (5.2) would hold for

the Hurwitz strata associated to those non-minimal choices by the construction of
Section 3.2. For type A`, Corollary 5.2 recovers Arnold’s formula for the LL-degree
of the space of complex trigonometric polynomials, as was already shown in [21]. The
fifth column indicates how ιω(MDZ

R ) sits as a stratum inside the parent Hurwitz space
Hgω,nω , either through explicit character relations in Rep(GR) or as a fixed locus of an
automorphism of the Hurwitz space induced by the folding of the Dynkin diagram.

R gω nω dgω;nω ιω
(
MDZ

R

)
deg(LL)

A` 0 (k − 1, `− k) `+ 1 H
[µ]
gω,nω

(`+ 1− k)`+1−k(k)k`!

(k − 1)!(`− k)!

B` 0 (`− 2, `− 2, 1) 2`+ 1
(
H

[µ]
gω,nω

)µ2 2(`+ 1)`(`− 1)`−1

C` 0 (`− 1, `− 1) 2`
(
H

[µ]
gω,nω

)µ2 (`+ 1)``

D` 0 (`− 3, `− 3, 1, 1) 2`+ 2
(
H

[µ]
gω,nω

)µ2 4`(`2 − 1)(`− 2)`−2

E6 5 (5, 5, 2, 2, 2, 2, 2) 42 (A.1) 23 · 36 · 5 · 7

E7 33 (11, 5, 3, 11, 5,
3, 1, 1, 3, 3)

130 (A.2) 212 · 33 · 5 · 7

E8 128

(29, 29, 14, 14, 14,
14, 14, 14, 9, 9,

9, 9, 5, 5, 4,

4, 4, 4, 4, 4,
2, 2, 0, 0)

518 [6, 7] 24 · 35 · 55 · 7

F4 4 (5, 5, 2, 2, 2, 2) 36
(3.40);(

MLG
[100000]E6

)µ2 23 · 33 · 5

G2 0 (1, 1, 1) 7
(3.41);(

MLG
[1000]D4

)S3 12

Table 5.1. Lyashko–Looijenga degrees for all Dynkin types.

5.2. The type-R extended Toda hierarchy. — Another notable consequence of the
determination of the prepotential and the superpotential of MDZ

R in Theorem 3.6
is the construction of a dispersionless bihamiltonian hierarchy of integrable PDEs
on the loop space LMDZ

R . This is amenable to a presentation both in normal and
dispersionless Lax forms, and generalises the dispersionless limit of the extended bi-
graded Toda hierarchy of [11, 21] (corresponding to R = A`) to general Dynkin types.

We first recall the general theory of principal hierarchies associated to Frobenius
manifolds as formulated by Dubrovin [15]. Let M be an n-dimensional semi-simple
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complex Frobenius manifold, {tα : M→ C}nα=1 a coordinate chart for M which is flat
for the metric η, and LM = {u : S1 → M} the formal loop space of M – an element
u ∈ LM being an n-tuple u = (u1, . . . , un) with ui ∈ C[[X,X−1]] a formal Laurent
series in a periodic coordinate X ∈ S1. Let (ηαβ) and (γαβ), α, β = 1, . . . , n, denote
the Gram matrices of the cotangent metrics η∗ and γ∗ on M. The loop space LM can
be endowed with a bihamiltonian pencil of hydrodynamic Poisson brackets

(5.3) {uα(X), uβ(Y )}[λ] = (γαβ + ληαβ)δ′(X − Y ) +
∑
δ

Γαβδ (u)∂Xuδ δ(X − Y ),

where Γαβδ denotes the Christoffel symbol of the Levi-Civita connection of γ∗ in the
flat coordinate chart t for η∗. Let ∇ denote the affine, torsion free connection on
T (M× C?) defined by

(5.4)
∇VW = iV dMW + zV ·W,

∇∂zW = i∂z dC?W − E ·W − z−1VW,

where z ∈ C?, V (z), W (z) ∈ Γ(TM), and V ∈ Γ(End(TM)) is the grading operator
defined in flat coordinates as Vαβ = (1−n/2)δαβ+∂βE

α. The Frobenius manifold axioms
imply that ∇ is flat [16, Lect. 6], and a basis of horizontal sections

∑
αW

α
β ∂α can be

taken to have the form Wα
β =

∑
ν η

αν∂βhν(u, z)zVzR for some constant matrix R

(determined by the monodromy data of the Frobenius manifold; see [18, Lect. 2]) and
h(u, z) ∈ Γ(OM)[[z]]. Furthermore, the Taylor coefficients hα,m(u) := [zm+1]hα define
Hamiltonian densities for which the corresponding local Hamiltonians,

Hα,m[u] :=

∫
S1

hα,m(u(X)) dX,

are in involution with respect to (5.3) for all λ,
(5.5) {Hα,m, Hβ,n}[λ] = 0.

The corresponding involutive Hamiltonian flows

(5.6) ∂Tα,mu
β := {uβ , Hα,m}[λ]

=
∑
δε

[
(γβδ + ληβδ)∂2

uδuεhα,m(u)uεX + Γβδε ∂uδhα,m(u)∂Xuε
]

for α = 1, . . . , n andm = 0, . . . ,∞ define an integrable hierarchy of quasi-linear PDEs
on LM, called the principal hierarchy of M; the dependent variables uα = uα(X,T )

are called the normal coordinates of the hierarchy. This hierarchy moreover satisfies
the τ -symmetry condition

∂Tµ,mhν,n((u(X,T )) = ∂Tν,nhµ,m(u(X,T )) =
∂3 log τ(X,T )

∂X∂Tµ,m∂Tν,n
,

for some function τ(X; (Tµ,m)µ,m). In particular, uα(X,T ) = ∂2
X,Tα,0

log τ .

5.2.1. The dispersionless extended R-type Toda hierarchy: Hamiltonian and Lax–
Sato form. — In the case of the Dubrovin–Zhang Frobenius manifolds of type R,
Theorem 3.6 can be used effectively to solve the problem of finding the fundamental
solutions of (5.4) and obtain the presentation of the principal hierarchy in normal
coordinates (5.6). An immediate adaptation of [16, Prop. 6.3] gives the following
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Proposition 5.3. — With conventions as in Lemma 4.1, let h̃i,α, h̃ext
j , h̃res

k be the
flat coordinates for the deformed connection (5.4) on MDZ

R ×C? normalised such that
h̃i,α = τi,α + O(z), h̃ext

j = τ ext
j + O(z), h̃res

k = τ res
k + O(z). Then,

h̃i,α(τ, z) = −ni + 1

α
Res
∞i

καi 1F1

(
1, 1 +

α

ni + 1
; zλ(µ)

)dµ

µ
,(5.7)

h̃ext
j (τ, z) = p.v.

∫ ∞j

∞0

ezλ
dµ

µ
, h̃res

k (τ, z) = Res
∞i

ezλ − 1

z

dµ

µ
,(5.8)

where 1F1(a, b;x) =
∑∞
n=0 (a)nx

n/(b)nn! is Kummer’s confluent hypergeometric func-
tion, and (a)n := Γ(a+ n)/Γ(a).

We call the bihamiltonian integrable hierarchy defined by (5.6) and (5.7)–(5.8) the
dispersionless extended R-type Toda hierarchy. For R = An, this coincides with the
dispersionless limit of the bi-graded Toda hierarchy of [11]. The adjective “extended”
refers to the Hamiltonian flows generated by Hext

j [u], which are higher order versions
of the space translation: when R is simply-laced these encode the non-stationary
Gromov–Witten invariants of the type-R P1 orbifold given by insertions of descendents
of the identity. We refer to the Hamiltonian flows generated by Hi,α[u] and Hres

k [u] as
the stationary flows of the hierarchy.

Theorem 3.6 also provides a dispersionless Lax–Sato description of (5.6) and (5.7)–
(5.8) as a specific reduction of the universal genus-gω Whitham hierarchy with `(nω)

punctures [31, 15]. Let C̃(ω)
w be the universal covering of Cωw r {∞i}i, the fibre at w

of the Landau–Ginzburg family of Theorem 3.6, viewed as an analytic variety. Fol-
lowing [16], we consider second and third kind differentials Ωi,α, Ωext

j , Ωres
k defined on

C̃
(ω)
w such that

Ωi,α;m = − 1

ni + 1

[( α

ni + 1

)
m+1

]−1

dλα/(ni+1)+m + regular,

Ωext
j;m =


−dψm(λ)

nj + 1
+ regular near ∞i,

dψm(λ)

n0 + 1
+ regular near ∞0,

Ωres
i;m = −d

( λm+1

(m+ 1)!

)
+ regular,

where ψm(λ) := λm/m!(log λ − Hm), and Hm is the mth harmonic number. Then,
(5.6) and (5.7)–(5.8) are equivalent to the dispersionless Lax system

∂T(i,α);m
λ = {λ, qi,α;m}LS, ∂T ext

i;m
λ = {λ, qext

j;m}LS, ∂T res
i;m
λ = {λ, qres

i;m}LS,

where qi,α;m(µ) :=
∫ µ

Ωi,α;m, qext
j;m(µ) :=

∫ µ
Ωext
j;m and qres

j;m(µ) :=
∫ µ

Ωres
j;m, and

{f(µ,X), g(µ,X)}LS := µ(∂µf∂Xg − ∂Xf∂µg).

Having a closed-form superpotential for MDZ
R from Theorem 3.6 in particular provides

explicit expressions for the Lax–Sato and Hamiltonian densities.
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Remark 5.4. — In [45], a deformation scheme for the genus zero universal Whitham
hierarchy is introduced in terms of a Moyal-type quantisation of the dispersionless
Lax–Sato formalism. It would be intriguing to apply these ideas to the cases when
MLG
ω embeds into a genus gω = 0 Hurwitz space, and verify that the resulting dis-

persionful deformation of the Principal Hierarchy is compatible with the hierarchy
obtained by the quantisation of the underlying semi-simple CohFT.

Example 5.1 (R = G2). — Let us consider for example R = G2. We construct explic-
itly the whole tower of Hamiltonian densities for the stationary flows of the type-G2

dispersionless Toda hierarchy. In principle, these can be computed (up to a triangular
linear transformation in the flow variables Tα,m) by imposing the recursion relation,
coming from the first line of (5.4),
(5.9) ∂2

tαtβ
hγ,m =

∑
δ

cδαβ∂tδhγ,m−1

with γ = 1, 2, 3, m > 0, hγ,0 =
∑
δ ηγ,δtδ, and c

γ
αβ are the structure constants of the

quantum product determined by the prepotential (4.19). While the recursion (5.9) is
ostensibly very hard to solve directly, the combination of Theorem 3.6 and Proposi-
tion 5.3 allows to give closed forms for the stationary Hamiltonians Hγ,m, γ = 1, 3,
parametrically in m. This is most easily achieved in flat coordinates (x0, x1, x2) for
the second metric γ, and in Hamiltonian form for the corresponding Poisson bracket.
From (3.42) we have

λ(µ) =
w0

µ2(µ+ 1)2

6∏
i=1

(µ− ai(x)),

with
a1 = ex1 , a2 = e−x1+x2 , a3 = e2x1−x2 , a4 = e−x1 , a5 = ex1−x2 , a6 = ex2−2x1 .

Labelling the punctures at µ = 0, −1 and∞ as∞0,∞1 and∞2 respectively we have:
h̃res

0;m = −h̃res
2;m = h3,m, h̃res

1;m = 0,

h̃0,1/2;m = h̃2,1/2;m = h1,m, h̃1,1/2;m = −2h̃0,1/2;m.

From (5.7) and (5.8) we then get that

h1,m =

2m+1∑
j=0

∑
k1,...,k6=0,...,2m+1∑

i ki=2m+1−j

(2m+ 1)je
(m+1/2)x0

j!(3/2)m

6∏
i=1

(m− ki + 3/2)ki
ai(x)ki−m−1/2ki!

,

h3,m =

2m∑
j=0

∑
k1,...,k6=0,...,m∑

i ki=2m−j

(2m)je
mx0

j!m!

6∏
i=1

ai(x)m−ki (m− ki + 1)ki
ki!

,

where (a)m = Γ(a + m)/Γ(m) is the usual notation for the Pochhammer symbol. In
these coordinates, the Gram matrix of the second metric γ and its inverse read

(γ) =

−1 0 0

0 12 −6

0 −6 4

 , (γ−1) =

−1 0 0

0 1/3 1/2

0 1/2 1

 .
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Let xi = fi(t1, t2, t3), i = 0, 1, 2 be the change-of-variables expressing the x-coor-
dinates in the flat coordinate chart (t1, t2, t3) for the first metric η, and define accord-
ingly wi = fi(u

1, u2, u3) for the corresponding dependent variables for the principal
hierarchy. In these coordinates, the second Poisson bracket takes the form (recall that
γij := (γ−1)ij)

{wi(X),wj(Y )}0 = γijδ′(X − Y )

and the stationary flows are given by

∂wi

∂Tj,m
= {wi, Hj,m}0 =

∑
k=0,1,2

γik∂wkhj,m(w)∂Xwk, j = 1, 3.

Appendix. Character relations for E6 and E7

A.1. R = E6. — The character relations for ρ = ρω1
and k = 1, . . . , 13 are given

below. The remaining character relations for k > 13 are obtained from the complex
conjugation relation

p
[100000]E6

k (χ1, χ2, χ3, χ4, χ5, χ6) = p
[000010]E6

27−k (χ5, χ4, χ3, χ2, χ1, χ6).

From Lemma 3.10 and Corollary 3.11 we find:

p
[100000]E6
0 = 1,

p
[100000]E6
1 = χ1,

p
[100000]E6
2 = χ2,

p
[100000]E6
3 = χ3,

p
[100000]E6
4 = χ1 − χ2

5 − χ2χ5 + χ4 + χ4χ6,

p
[100000]E6
5 = χ2

1 − 2χ2
5χ1 + 2χ4χ1 + χ2

4 + χ5χ
2
6 + χ2 − 2χ3χ5 + χ5 − χ2χ6 − χ5χ6,

p
[100000]E6
6 = χ1χ5 − χ3

5 − χ2χ
2
5 + 2χ4χ5 − 2χ1χ6χ5 + χ4χ6χ5 + χ3

6

+ 2χ1χ2 − 2χ3 + χ2χ4 − 3χ3χ6,

p
[100000]E6
7 = 2χ2

2 + χ5χ2 − 2χ5χ6χ2 + χ3χ
2
5 + χ1χ

2
6 + χ4χ

2
6 − 3χ1χ3

− 2χ3χ4 + χ4 − χ2
5χ6 − χ1χ6 + χ4χ6,

p
[100000]E6
8 = χ2χ

3
5 − χ1χ6χ

2
5 + χ2

6χ5 + χ1χ2χ5 − 2χ3χ5 − 3χ2χ4χ5 + χ3χ6χ5

− 2χ6χ5 + χ5 − χ2
1 − χ2χ

2
6 + χ2χ3 + χ1χ4 + χ2

1χ6 − χ2χ6 + 2χ1χ4χ6,

p
[100000]E6
9 = χ1χ

4
5 − χ6χ

3
5 + χ2χ

2
5 − 4χ1χ4χ

2
5 + χ2χ6χ

2
5 − χ2

2χ5 − χ1χ
2
6χ5

+ χ4χ5 + 3χ4χ6χ5 + χ3
6 + χ2

3 + 2χ1χ
2
4 + χ1χ2 − 6χ3 + 4χ2

1χ4 − 4χ2χ4

+ 4χ1χ3χ5 − 2χ2χ4χ6 − 3χ3χ6 − 4χ1χ5 + 3,
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p
[100000]E6
10 = χ5

5 − 5χ4χ
3
5 + χ1χ6χ

3
5 − χ2

6χ
2
5 − χ1χ2χ

2
5 + 5χ3χ

2
5 − χ2

5 − 2χ2
1χ5

+ χ2χ3χ5 + 4χ1χ4χ5 + χ2
1χ6χ5 − 2χ2χ6χ5 − 3χ1χ4χ6χ5 + χ1χ

2
6

+ χ2
1χ2 − 5χ1χ3 + 2χ1χ2χ4 − 5χ3χ4 − χ2

2χ6 − 2χ1χ6 + χ1χ3χ6

+ χ2χ5 + 5χ2
4χ5 + 2χ4χ

2
6 + 2χ1 − χ4χ6,

p
[100000]E6
11 = χ6χ

4
5 − χ2χ

3
5 + χ1χ3χ

2
5 − χ4χ

2
5 + 2χ1χ6χ

2
5 − 4χ4χ6χ

2
5 − 2χ2

6χ5

+ 3χ3χ5 + 3χ2χ4χ5 − 2χ1χ2χ6χ5 + 3χ3χ6χ5 − χ6χ5 + χ1χ
2
2 + 2χ2

4

+ 2χ2
1χ

2
6 − 2χ2χ

2
6 + 2χ2 − 3χ2

1χ3 + χ2χ3 + χ2
2χ4 + χ1χ4 − 2χ1χ3χ4

+ χ2χ6 + 2χ2
4χ6 − 2χ2

1χ6 − χ1χ2χ5,

p
[100000]E6
12 = 2χ6χ

3
1 + χ2

5χ
2
1 − χ4χ

2
1 − 2χ2χ5χ

2
1 − χ2

5χ6χ
2
1 + χ4χ6χ

2
1 + 3χ5χ

2
6χ1

− 3χ2χ3χ1 + χ2χ4χ5χ1 + χ5χ1 − 5χ2χ6χ1 − 2χ5χ6χ1 + χ3
2 + χ3χ

3
5

− χ3
5 − 2χ3

6 + 3χ2
3 − χ3 + χ2χ4 + 3χ2

2χ5 − 3χ3χ4χ5 + 2χ4χ5 + χ3
5χ6,

+ 2χ2χ1 + 6χ3χ6 − 3χ4χ5χ6 − χ3
1 − χ2χ

2
5χ6

p
[100000]E6
13 = χ4

1 − 2χ2
5χ

3
1 + 2χ4χ

3
1 + χ2

4χ
2
1 − 3χ2χ

2
1 − 2χ3χ5χ

2
1 − χ5χ

2
1 − χ2χ6χ

2
1

+ 2χ3
5χ1 + 2χ2χ

2
5χ1 − 2χ2

6χ1 + χ3χ1 − 4χ2χ4χ1 + χ2
2χ5χ1 − 4χ4χ5χ1

+ 3χ3χ6χ1 + χ4χ5χ6χ1 − χ6χ1 + 2χ1 + χ2
2 − 2χ2χ

2
4 + χ3χ

2
5 + χ2χ4χ

2
5

+ χ2
5χ

2
6 − 3χ3χ4 + 2χ4 + χ2χ5 − χ2χ3χ5 + χ2

2χ6 − 2χ2
5χ6 − 2χ2χ5χ6

+ 4χ5χ6χ
2
1 − χ3

5χ6χ1.

A.2. R = E7. — We include here the character relations for ρ = ρω6
and k =

1, . . . , 11; note that by reality, we have pω6

56−k = pω6

k . The full set of character re-
lations for k up to 28 is available upon request.

p
[0000010]E7
0 = 1,

p
[0000010]E7
1 = χ6,

p
[0000010]E7
2 = χ5 + 1,

p
[0000010]E7
3 = χ4 + χ6,

p
[0000010]E7
4 = χ3 + χ5 + 1,

p
[0000010]E7
5 = (1− χ1)χ4 +

(
−χ2

1 + χ1 + χ2 + χ5 + 1
)
χ6 + χ2χ7,

p
[0000010]E7
6 = (1− 2χ5)χ2

1 − 2χ3
1 +

(
χ2

6 − χ7χ6 + χ2
7 + 4χ2 − 2χ3 + 2χ5 + 2

)
χ1

− χ3 + 2χ5 + 2χ2(χ5 + 1) + χ4χ6 − χ4χ7 − χ6χ7 + χ2
5 + χ2

2 + 1,

p
[0000010]E7
7 = χ4

(
2− χ2

1 + χ1 + χ2 + 2χ5

)
+ (1− χ3

1 + (2χ2 + χ5 + 3)χ6χ1 + 2χ2

− 2χ3 + χ5 + χ7

(
−2χ2

1 + (χ2 − 2χ5 + 1)χ1 + χ2
7 + 3χ2 − 3χ3

)
,
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p
[0000010]E7
8 = (2χ2

6 + χ4χ6 − 2χ7χ6 + χ2
7 + 4χ2 − 2χ3

1 − 4χ3 + 2χ5 − 2χ4χ7)χ1

+ χ2
2 + 2χ2

4 + χ2
6 + χ5χ

2
7 + χ2

7 − 2χ3 − 3χ3χ5 + 3χ4χ6 + χ4χ7

+ χ2(χ2
6 + χ7χ6 + χ2

7 − 2χ3 + 2χ5) + (χ3 − 2χ5 − χ6χ7 + 2)χ2
1

− χ5χ6χ7 + χ6χ7,

p
[0000010]E7
9 = (χ1 + 2)χ3

6 − 2χ1χ7χ
2
6 + (−χ3

1 + χ2
1 +

(
χ2

7 + 2χ2 − 2χ3 − 2χ5

)
χ1

− 3χ3 − 2χ5 + χ2(χ5 + 1)− χ2
5 − 1)χ6 + ((χ2 + χ3 + χ5 + 2)χ1

− (χ5 + 2)χ2
1 + χ2

5 − χ3 + 3χ5 + 2χ2(χ5 + 1) + 2)χ7

+ χ4(χ3
1 − χ2

1 + (−3χ2 + χ5 + 2)χ1

− χ2
7 − 2χ2 + χ3 + 3χ5 − χ6χ7 + 4),

p
[0000010]E7
10 =

(
−χ2

6 − 2χ7χ6 + χ2
7 − (4χ2 + 1)χ5 + χ4(χ6 + χ7)

)
χ2

1

− (χ2
4 + 3χ7χ4 − 4χ2

5 − χ2χ
2
6 − 2χ2

6 + χ2
7 − 3χ2χ6χ7 − 3χ6χ7)χ1

+ χ6χ
3
7 + χ2

3 + 4χ2χ
2
5 + 2χ2

5 + χ2χ
2
6 − 5χ5χ

2
6 − 5χ2

6 − χ2χ
2
7 − χ5χ

2
7

+ 5χ5 − 4χ2χ4χ6 + 3χ4χ6 + χ4χ5χ6 − 2χ2χ4χ7 + χ4χ7 + 2χ2χ6χ7

+ 2χ2χ5 + χ5χ
4
1 − χ6χ7χ

3
1 +

(
4χ2

6 + χ2
7 − 2

)
χ5χ1χ1 + 2χ5χ6χ7 + 3χ4

6

+ χ6χ7 + χ3

(
−6χ2

6 − 3χ7χ6 + (4χ1 + 5)χ5 + 4
)
− χ2

7 + 2χ2
2χ5 + 3,

p
[0000010]E7
11 = χ6χ

5
1 − χ7χ

4
1 + 2χ4χ

3
1 − 5χ2χ6χ

3
1 − 5χ6χ

3
1 + χ5χ7χ

3
1 − χ3

6χ
2
1

− χ6χ
2
7χ

2
1 + χ4χ

2
1 − χ4χ5χ

2
1 + χ2χ6χ

2
1 + 5χ3χ6χ

2
1 − 4χ5χ6χ

2
1 + 3χ6χ

2
1

+ 4χ2χ7χ
2
1 − 2χ5χ7χ

2
1 + 3χ7χ

2
1 + 4χ3

6χ1 + χ3
7χ1 + χ4χ

2
6χ1 − 6χ2χ4χ1

+ χ3χ4χ1 − 3χ4χ1 + 4χ4χ5χ1 + 5χ2
2χ6χ1 − 2χ2

5χ6χ1 + 8χ2χ6χ1

− 8χ3χ6χ1 + 4χ2χ5χ6χ1 − χ6χ1 + χ2
5χ7χ1 + χ2

6χ7χ1 − χ2χ7χ1

− 4χ3χ7χ1 − 3χ2χ5χ7χ1 + χ5χ7χ1 − 2χ4χ6χ7χ1 − 3χ7χ1

+ 2χ5χ
3
6 + χ4χ

2
5 − χ4χ

2
6 − χ4χ

2
7 + 2χ2χ6χ

2
7 + χ5χ6χ

2
7 + χ6χ

2
7 − 7χ2χ4

+ 5χ3χ4 + 3χ4 + 2χ2χ4χ5 + 3χ4χ5 + 3χ2
2χ6 − χ2

5χ6

+ 2χ2χ6 − 5χ2χ3χ6 − 2χ3χ6 + 7χ2χ5χ6 − 5χ3χ5χ6 − χ5χ6

+ χ6 − 2χ2
2χ7 − χ2

4χ7 + χ2
5χ7 − χ2χ

2
6χ7 − 2χ5χ

2
6χ7 − 2χ2

6χ7 − 2χ2χ7

+ 3χ3χ7 − χ2χ5χ7 + χ3χ5χ7 + 3χ5χ7 + 2χ4χ6χ7 + 2χ7.
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