The Markov-quantile process attached to a family of marginals
[Le processus Markov-quantile attaché à une famille de marges]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1-62.

Soit μ=(μ t ) t une famille à un paramètre de mesures de probabilité sur . Son processus quantile (G t ) t :]0,1[ , donné par G t (α)=inf{x:μ t (]-,x])α}, n’est en général pas markovien. Nous le modifions pour construire le processus markovien que nous nommons « Markov-quantile » : il existe un unique processus markovien X de marges μ t qui est limite, pour la convergence fini-dimensionnelle, de processus quantiles dont le passé est rendu indépendant du futur en un nombre fini d’instants (beaucoup de limites non markoviennes existent en général). Il est frappant qu’aucune hypothèse de régularité sur la famille μ n’est nécessaire. En outre, si μ est croissante pour l’ordre stochastique, les trajectoires de X sont croissantes. Ceci est un analogue d’un résultat de Kellerer traitant de l’ordre convexe. Dans un article associé [8] on montre aussi que si μ est absolument continue dans l’espace de Wasserstein 𝒫 2 (), X est solution d’un problème de transport de Benamou–Brenier avec marges μ t , et fournit donc une représentation markovienne de l’équation de continuité, unique dans le sens donné plus haut.

Let μ=(μ t ) t be any 1-parameter family of probability measures on . Its quantile process (G t ) t :]0,1[ , given by G t (α)=inf{x:μ t (]-,x])α}, is not Markov in general. We modify it to build the Markov process we call “Markov-quantile”: there is a unique Markov process X with marginals μ t , being a limit for the finite dimensional topology of quantile processes where the past is made independent of the future at finitely many times (many non-Markovian limits exist in general). Strikingly, no regularity is required for the family μ. Moreover, if μ is increasing for the stochastic order, X has increasing trajectories. This is an analogue of a result of Kellerer dealing with the convex order. In a companion paper [8] it is also proved that if μ is absolutely continuous in the Wasserstein space 𝒫 2 (), X is solution of a Benamou–Brenier transport problem with marginals μ t , providing a Markov representation of the continuity equation, unique in the sense above.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.177
Classification : 60A10, 28A33, 60J25, 35Q35, 60G44, 49J55
Keywords: Markov process, quantile process, optimal transport, continuity equation, increasing process, Kellerer’s theorem, martingale optimal transport, peacocks, copula
Mot clés : Processus markovien, processus quantile, transport optimal, équation de continuité, processus croissant, théorème de Kellerer, transport optimal martingale optimal, peacocks, copule
Boubel, Charles 1 ; Juillet, Nicolas 1

1 Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS 7 rue René Descartes, 67000 Strasbourg, France
@article{JEP_2022__9__1_0,
     author = {Boubel, Charles and Juillet, Nicolas},
     title = {The {Markov-quantile} process attached to a~family of marginals},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1--62},
     publisher = {Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.177},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.177/}
}
TY  - JOUR
AU  - Boubel, Charles
AU  - Juillet, Nicolas
TI  - The Markov-quantile process attached to a family of marginals
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1
EP  - 62
VL  - 9
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.177/
DO  - 10.5802/jep.177
LA  - en
ID  - JEP_2022__9__1_0
ER  - 
%0 Journal Article
%A Boubel, Charles
%A Juillet, Nicolas
%T The Markov-quantile process attached to a family of marginals
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1-62
%V 9
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.177/
%R 10.5802/jep.177
%G en
%F JEP_2022__9__1_0
Boubel, Charles; Juillet, Nicolas. The Markov-quantile process attached to a family of marginals. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1-62. doi : 10.5802/jep.177. http://www.numdam.org/articles/10.5802/jep.177/

[1] Albin, J. M. P. A continuous non-Brownian motion martingale with Brownian motion marginal distributions, Statist. Probab. Lett., Volume 78 (2008) no. 6, pp. 682-686 | DOI | MR | Zbl

[2] Ambrosio, L.; Gigli, N.; Savaré, G. Gradient flows in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008 | Zbl

[3] Beiglböck, Mathias; Huesmann, Martin; Stebegg, Florian Root to Kellerer, Séminaire de Probabilités XLVIII (Lect. Notes in Math.), Volume 2168, Springer, Cham, 2016, pp. 1-12 | DOI | MR | Zbl

[4] Beiglböck, Mathias; Juillet, Nicolas On a problem of optimal transport under marginal martingale constraints, Ann. Probab., Volume 44 (2016) no. 1, pp. 42-106 | DOI | MR | Zbl

[5] Beiglböck, Mathias; Juillet, Nicolas Shadow couplings, Trans. Amer. Math. Soc., Volume 374 (2021) no. 7, pp. 4973-5002 | DOI | MR | Zbl

[6] Benamou, Jean-David; Brenier, Yann A numerical method for the optimal time-continuous mass transport problem and related problems, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997) (Contemp. Math.), Volume 226, American Mathematical Society, Providence, RI, 1999, pp. 1-11 | DOI | MR | Zbl

[7] Billingsley, Patrick Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons Inc., New York, 1999 | DOI | Zbl

[8] Boubel, Charles; Juillet, Nicolas On absolutely continuous curves in the Wasserstein space over and their representation by an optimal Markov process, 2021 | arXiv

[9] Brunick, Gerard; Shreve, Steven Mimicking an Itô process by a solution of a stochastic differential equation, Ann. Appl. Probab., Volume 23 (2013) no. 4, pp. 1584-1628 | DOI | Zbl

[10] Doeblin, W. Sur certains mouvements aléatoires discontinus, Skand. Aktuarietidskr., Volume 22 (1939), pp. 211-222 | DOI | MR | Zbl

[11] Dupire, Bruno et al. Pricing with a smile, Risk, Volume 7 (1994) no. 1, pp. 18-20 https://www.risk.net/derivatives/equity-derivatives/1500211/pricing-with-a-smile

[12] Federer, H. Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl

[13] Feller, William An introduction to probability theory and its applications. Vol. I, John Wiley & Sons, Inc., New York-London-Sydney, 1968

[14] Gyöngy, I. Mimicking the one-dimensional marginal distributions of processes having an Itô differential, Probab. Theory Relat. Fields, Volume 71 (1986) no. 4, pp. 501-516 | DOI | Zbl

[15] Hamza, Kais; Klebaner, Fima C. A family of non-Gaussian martingales with Gaussian marginals, J. Appl. Math. Stochastic Anal. (2007), 92723, 19 pages | DOI | MR | Zbl

[16] Henry-Labordère, Pierre; Tan, Xiaolu; Touzi, Nizar An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint, Stochastic Process. Appl., Volume 126 (2016) no. 9, pp. 2800-2834 | DOI | MR | Zbl

[17] Hillion, Erwan W 1,+ -interpolation of probability measures on graphs, Electron. J. Probab., Volume 19 (2014), 92, 29 pages | DOI | MR | Zbl

[18] Hirsch, Francis; Profeta, Christophe; Roynette, Bernard; Yor, Marc Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series, 3, Springer, Milan, 2011 | DOI | MR | Zbl

[19] Hirsch, Francis; Roynette, Bernard On d -valued peacocks, ESAIM Probab. Statist., Volume 17 (2013), pp. 444-454 | DOI | MR | Zbl

[20] Hirsch, Francis; Roynette, Bernard; Yor, Marc Kellerer’s theorem revisited, Asymptotic Laws and Methods in Stochastics. Volume in Honour of Miklos Csorgo (Fields Inst. Commun. Series), Volume 76, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 347-363 | DOI | MR | Zbl

[21] Hobson, David G. Fake exponential Brownian motion, Statist. Probab. Lett., Volume 83 (2013) no. 10, pp. 2386-2390 | DOI | MR | Zbl

[22] Hobson, David G. Mimicking martingales, Ann. Appl. Probab., Volume 26 (2016) no. 4, pp. 2273-2303 | DOI | MR | Zbl

[23] Juillet, Nicolas Peacocks parametrised by a partially ordered set, Séminaire de Probabilités XLVIII (Lect. Notes in Math.), Volume 2168, Springer, Cham, 2016, pp. 13-32 | DOI | MR | Zbl

[24] Juillet, Nicolas Martingales associated to peacocks using the curtain coupling, Electron. J. Probab., Volume 23 (2018), 8, 29 pages | DOI | MR | Zbl

[25] Kallenberg, Olav Foundations of modern probability, Probability and its Appl. (New York), Springer-Verlag, New York, 2002 | DOI | Zbl

[26] Kamae, T.; Krengel, U. Stochastic partial ordering, Ann. Probab., Volume 6 (1978) no. 6, pp. 1044-1049 http://links.jstor.org/sici?sici=0091-1798(197812)6:6<1044:SPO>2.0.CO;2-N | DOI | MR | Zbl

[27] Kaminsky, K. S.; Luks, E. M.; Nelson, P. I. Strategy, nontransitive dominance and the exponential distribution, Austral. J. Statist., Volume 26 (1984) no. 2, pp. 111-118 | DOI | MR | Zbl

[28] Kellerer, Hans G. Markov-Komposition und eine Anwendung auf Martingale, Math. Ann., Volume 198 (1972), pp. 99-122 | DOI | MR | Zbl

[29] Kellerer, Hans G. Integraldarstellung von Dilationen, Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to the memory of Antonín Špaček), Academia, Prague, 1973, pp. 341-374 | MR | Zbl

[30] Kellerer, Hans G. Order conditioned independence of real random variables, Math. Ann., Volume 273 (1986), pp. 507-528 | DOI | MR | Zbl

[31] Kellerer, Hans G. Markov property of point processes, Probab. Theory Relat. Fields, Volume 76 (1987), pp. 71-80 | DOI | MR | Zbl

[32] Léonard, Christian Lazy random walks and optimal transport on graphs, Ann. Probab., Volume 44 (2016) no. 3, pp. 1864-1915 | DOI | MR | Zbl

[33] Lisini, Stefano Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, Volume 28 (2007) no. 1, pp. 85-120 | DOI | MR | Zbl

[34] Lowther, George Fitting martingales to given marginals, 2008 | arXiv

[35] Lowther, George Limits of one-dimensional diffusions, Ann. Probab., Volume 37 (2009) no. 1, pp. 78-106 | DOI | MR | Zbl

[36] Madan, Dilip B.; Yor, Marc Making Markov martingales meet marginals: with explicit constructions, Bernoulli, Volume 8 (2002) no. 4, pp. 509-536 | MR | Zbl

[37] Nagasawa, Masao Schrödinger equations and diffusion theory, Monographs in Math., 86, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl

[38] Ollivier, Yann Ricci curvature of Markov chains on metric spaces, J. Funct. Anal., Volume 256 (2009) no. 3, pp. 810-864 | DOI | MR | Zbl

[39] Pagès, Gilles Functional co-monotony of processes with applications to peacocks and barrier options, Séminaire de Probabilités XLV (Lect. Notes in Math.), Volume 2078, Springer, Cham, 2013, pp. 365-400 | DOI | MR | Zbl

[40] Pass, Brendan On a class of optimal transportation problems with infinitely many marginals, SIAM J. Appl. Math., Volume 45 (2013) no. 4, pp. 2557-2575 | DOI | MR | Zbl

[41] Rachev, Svetlozar T.; Rüschendorf, Ludger Mass transportation problems. Vol. I & II, Probability and its Appl. (New York), Springer-Verlag, New York, 1998 | Zbl

[42] Rinott, Yosef; Scarsini, Marco; Yu, Yaming A Colonel Blotto gladiator game, Math. Oper. Res., Volume 37 (2012) no. 4, pp. 574-590 | DOI | MR | Zbl

[43] Shaked, Moshe; Shanthikumar, J. George Stochastic orders, Springer Series in Statistics, Springer, New York, 2007 | DOI | Zbl

[44] Strassen, V. The existence of probability measures with given marginals, Ann. Math. Statist., Volume 36 (1965), pp. 423-439 | DOI | MR | Zbl

[45] Villani, C. Topics in optimal transportation, Graduate Studies in Math., 58, American Mathematical Society, Providence, RI, 2003 | DOI | MR | Zbl

[46] Villani, C. Optimal transport, Grundlehren Math. Wiss., 338, Springer-Verlag, 2009 | DOI | MR

Cité par Sources :