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THE MARKOV-QUANTILE PROCESS ATTACHED TO
A FAMILY OF MARGINALS

BY CHARLES BouskL & Nicoras JuiLLET

Asstract. — Let p = (ut)ter be any l-parameter family of probability measures on R. Its
quantile process (Gt)ier : |0, 1[ — RE, given by Gi(a) = inf{z € R : u(]—o0,z]) > a}, is
not Markov in general. We modify it to build the Markov process we call “Markov-quantile”:
there is a unique Markov process X with marginals p¢, being a limit for the finite dimensional
topology of quantile processes where the past is made independent of the future at finitely many
times (many non-Markovian limits exist in general). Strikingly, no regularity is required for the
family pu. Moreover, if u is increasing for the stochastic order, X has increasing trajectories. This
is an analogue of a result of Kellerer dealing with the convex order. In a companion paper [8] it
is also proved that if u is absolutely continuous in the Wasserstein space P2 (R), X is solution of
a Benamou—Brenier transport problem with marginals p¢, providing a Markov representation
of the continuity equation, unique in the sense above.

Résumié (Le processus Markov-quantile attaché & une famille de marges)

Soit p = (ut)ter une famille & un parametre de mesures de probabilité sur R. Son processus
quantile (Gt)er : ]0,1[ — RE, donné par Gi(a) = inf{zx € R : u(]—oco,x]) > a}, n'est
en général pas markovien. Nous le modifions pour construire le processus markovien que nous
nommons « Markov-quantile » : il existe un unique processus markovien X de marges p¢ qui est
limite, pour la convergence fini-dimensionnelle, de processus quantiles dont le passé est rendu
indépendant du futur en un nombre fini d’instants (beaucoup de limites non markoviennes
existent en général). Il est frappant qu’aucune hypothése de régularité sur la famille p n’est
nécessaire. En outre, si p est croissante pour l'ordre stochastique, les trajectoires de X sont
croissantes. Ceci est un analogue d’un résultat de Kellerer traitant de ’ordre convexe. Dans un
article associé [8] on montre aussi que si p est absolument continue dans ’espace de Wasserstein
P2(R), X est solution d’un probléme de transport de Benamou-Brenier avec marges p¢, et
fournit donc une représentation markovienne de 1’équation de continuité, unique dans le sens
donné plus haut.
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1. INnTRODUCTION

Rather surprisingly, the basic question of the existence of a Markov martingale
with prescribed marginals (u¢):er remains open since the partial result [28] of 1972.
More generally, only the method of [28], rediscovered or revisited by several authors,
seems to be available to provide Markov processes with prescribed marginals—and
satisfying an additional constraint, as being a martingale.

In this paper we give two new methods—one of them rests on order arguments—to
solve this type of question. We apply them to measures (u¢):er in stochastic order.

This detailed introduction explains precisely this context and all our results.

1.1. FORMAL STRUCTURE OF THE ARTICLE. We prove three main theorems, stated and
labeled as A, B, and C in this introduction and proved in the order C, A, B in the pa-
per; see also their interdependence in Figure 1, where appears also the Main Theorem
of a companion paper [8]. Theorem A answers the Main Problem p. 3 below, and is a
general theoretical result in Probability Theory; it builds a certain stochastic process
with given marginals: the Markov-quantile process. Theorem B gives a convergence
result to it. Theorems C presents an application of the Markov-quantile process to
another context (Martingales and a theorem of Kellerer [28, 29]), giving by the way
the Main Problem additional motivations, see Section 1.3 and Figure 1. We also prove
Theorem 2.26, linked with Theorem C. Being a bit more technical, it is not stated
in this introduction. Another application (to Optimal Transport and the Continuity
Equation) in presented in [8].

In this introduction we first give the very necessary notions to state Theorems A—B
as quickly as possible in Section 1.2, then state Theorem C in Section 1.3. We quickly
comment on [8] in Section 1.4. We slow the flow in Section 1.5 to give a qualitative
insight into the Main Problem and its difficulties, that also shows why it is a natural
problem in itself. We give in Section 1.6 the structure of the article and in Section 1.7
an index of our notation.

This paper treats of Measure, Probability, and Transport Theories. To be under-
stood by a large panel of readers, we give the definitions of the more specific notions
of each of these fields, or Reminders about them if needed.

1.2. Our rESULTS AND THEIR MOTIVATION. — Take (E;);c7 a (finite or not) family of
measurable spaces; [] .o
the preimages of those of the factors by the projections.

E; is endowed with its cylindrical o-algebra, generated by

Reminper 1.1. — A process is a family X = (X ),eg of measurable maps
X, :Q—FE,,

called random variables, defined on the same probability space (€2, P). In this article,
contrary to what may be considered usual, no measurability condition is required on
Q x T. For every 7' C T, (X;);cgs defines a map Fy from Q to [] .4 E-. The law
of (X;)req is the pushed-forward probability measure (Fy/)xP on [] E., which

is also called the marginal law of the measure (Fiy)xP on [].cq/ Er.

TeT!
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Tie MARKOV-QUANTILE PROCESS 3

Now let - be a probability measure on E,, for each 7.

Norarion 1.2. — For all measurable space E, M(FE) and P(F) are the spaces of mea-

sures and probability measures on E. If 7/ C T, projT is the projection [[. .4 Er —

T€T
[1.cq Er; in case T = {71,..., 7y} is finite, proj™ means proji™ ™} When
Pe ?(erfr ET) and s < t, P* stands for (proj®)xP and P*! for (proj**),P, and
Marg((ptr)rer) denotes {P € P(I[,cq E7) : V7 € T, (proj")»P = p,}. When not
otherwise specified, what we call the marginals of P are its marginals P°® on a single

factor.

Tm

Reminper 1.3

(a) If P € Marg((pir)req), setting Q = ([[,cq -, P) and X = (X;)req =
(proj™)-e7 we get a process called the canonical process, of law P. For this rea-
son, by an abuse of language—e.g., in the title of this article—, we sometimes call
process a probability measure on a product space. For the same reason we may also
see Marg((11r)re7) as the set of the processes (X;)reg such that Law(X,) = u, for
all 7.

(b) If 4T =2, i.e., if p € P(E) and v € P(E’), a measure P € Marg(u,v) is called
a transport (plan) from p to v, or a coupling between p and v.

Here is our problem. It is stated for any family of measures, without any assumption
of regularity in the parameter ¢.

MaiN Prosrem. — If p = (ut)ier is a one-parameter family of probability measures
on R, we want to build a measure 9 € Marg(u) that at once:

(a) is Markov,
(b) resembles as much as possible the quantile measure Q € Marg(u).

Let us explain these two points. Take P € Marg((u¢):er) and (X¢)ter a process of
law P; point (a) means:

(1) Vs eR,Vt>s, Law(X¢| (Xy)ugs) = Law(X| Xs),

where Law(X;| (Xy)ugs) is the law of X conditionally to the o-algebra generated by
the X, for u < s. See also Definition 2.11, where the Markov property is introduced
only through notions defined in this article.

For point (b), 9 € Marg((u¢)ier) is defined as follows.

Reminper 1.4 (The quantile process). — The quantiles of a measure u € P(R) gen-
eralize the notion of the median, which is the quantile of level 1/2. The quantile
of p of level « is the smallest real number x,,(a) such that p(]—oo, z,(a)]) > o and
p([zu(a),+o00[) = 1 — a. The quantile process X = (X;)rc7, defined on Q = [0, 1]
with the Lebesgue measure, is given by X(a) = x,, (o), and we denote Law(X) by
9 € Marg((ut)ter). In particular, Law(X;) = u; for every ¢t € J. See Definition 3.23
for full details.

JIEP. — M., 2022, tome g



4 C. Bousgr & N. JurLLer

Alternatively, 9 is also implicitly defined by the fact that it is the unique measure
such that for all x € R and all t > s, if X is a process of law £Q:

(2) Law(X;| Xs < ) = min{Law(Y;| Y, < z) : Law(Y) € Marg((1¢):er)},
where this minimum is with respect to the stochastic order:

Reminper 1.5. — The stochastic order on P(R) is defined by: p =40 v if, for all
T €R, ,U,(]—OO,SU]) > V(]—OO,.TD-

The idea of the minimality property (2) is the following. Among the processes with
marginals (u¢):, the quantile process is the one that perturbs the least possible the
order in which the elements of mass are distributed at each time: for any two times
s < t, it transports the mass below any constant x, at time s, to the smallest possible
measure, for the stochastic order, at time ¢.

The problem is that £ is not Markov in general, see Remark 1.8(a) a bit below.
In view of its definition through (2), we seek some Markov process 9, if it exists,
such that:

— processes of law 919 satisfy a version of (2) among Markov processes,

— like for Q € Marg((us)ier), if (tt)ter is increasing for =g, some processes
(Xt)ter of law MO € Marg((141)+cr) are increasing, i.e., the functions t — X;(w) are,

— like for £, the couplings (proj®’)xMNO of MO have an increasing kernel
(or briefly, 9O has increasing kernels), as follows (see Definition 3.11 for alternative
definitions not resorting to conditional laws):

Derinirion 1.6. Take P € Marg((u1¢);) and for s < t, set P$! = (proj*')4P.
We call kernel of P* the data of the conditional measures Law (X;| Xs = x), where X
is a process of law P; just below we denote it by (P2?),cg.

We say that P** has increasing kernel if x < y implies Py* <o Pp'. We say
that P has increasing kernels if P*?! has for every s < t.

Be careful that the following convention is now used throughout. Our answer to
the Main Problem is Theorem A below.

ConvenTion 1.7. When we introduce finite sets {ri,...,7,} or m-tuples (ry)i,
of real numbers, we mean implicitly that r; < -+ < 7p,.

Tororem A. Let (ut)ter be a family of probability measures on R.

(a) There exists a unique measure MQ € Marg((pu)ter) such that:

(i) MQ is Markov,

(ii) IMMA has increasing kernels,

(iii) MQ has minimal couplings (alias transports) among the measures satis-
fying (i) and (i), in the sense that it satisfies (2), where the minimum is taken
among processes (Yi): satisfying (1) and (ii).

It is also the unique process satisfying (i) above and:

JE.P.— M., 2022, tome g



Tie MARKOV-QUANTILE PROCESS 5

(iv) For each s < t, there is a sequence (R3')nen of finite subsets of [s,t]

such that MO>" is the weak limit of the sequence (Qfl’;,t])neN, where for R =
{r1,...,rm} C [s, ], Qfl’% is the result of the following composition, sometimes

also called “product”:
[ SLETNE'S LESLE IRy LEC RS RLEL Qrm,t

of the quantile couplings Q"7 € Marg(pir,, fir; )-
Moreover:
(b) If (ue)ter is increasing for the stochastic order, i.e., s <t = s =sto tit, there
exists a process X = (X;)ier : Q@ — RR of law IMMQ with increasing trajectories, i.e.,
such that t — Xi(w) is an increasing function, for all w € ).

We recall the notion of weak limit in Reminder 1.11, and that of composition,
which corresponds to the composition of kernels, in Section 2.1 and in particular
2.1.2. Besides, one may also see Q%71 . Q"2 ... Q" a5 (projs’t)#Q[R], where Qg
is introduced in Proposition 1.10 below.

Informally, we may interpret Theorem A(a) as the following answer to the Main
Problem: 919 is the Markov process whose “infinitesimal transitions” are those of
the quantile process. Besides, an immediate consequence of Theorem A(a) is the
important point (b) of Remark 1.8. Finally, we neither proved nor disproved that
ML) is strongly Markovian. The question remains hence open and we think it is
a significant one—see Open problem 5.5.4 and Example 5.4 (where it is strongly
Markovian).

Remark 1.8

(a) In general, the quantile measure 9 € Marg((u+)ter) is not Markov. Take, e.g.,
Mt = %(50 + 51) for ¢ 7é 0 and Ho = 50, then Q = Law((Xt)teR) with (Xt)tE]R =0
or (Xt)ter = Lr~, both with probability 1/2. Hence for all ¢ > 0, Law(X| Xo) = p.
Now Law(X|Xo = 0, X_1 = i) = ¢; for i € {0,1}, so that (1) is false for u = 0.
As proved in [23, Prop. 3], 2 is Markov except if a phenomenon of this type happens,
see details in Example 5.11. In particular, £ is Markov when the measures u; have
no atoms (see a direct proof in Remark 4.35).

(b) When 9 € Marg((ut)ter) is Markov, 9MQ = Q. Indeed, then, Q%" = Q%™ ... ..
Q™! for every s <71y < - < 7y, < t. Hence according to (iv), Vs, Vt > s, MOQ*" =
9%, Since both processes are Markov they coincide in law (see Corollary 2.13).

Remark 1.9 (Justification of the name “Markov-quantile”). — While Properties (i)
and (ii) of Theorem A(a) are satisfied by the product measure (law of the indepen-
dent process) @, cp tt, the quantile process Q satisfies (ii) and (iii) in the sense that
it satisfies (ii) and its couplings Q%! are minimal among those of the measures sat-
isfying (ii). In fact, Theorem A is constructive and builds 9 as a modification
of Q; therefore we call this measure 9 the “Markov-quantile” measure attached to

(14e)ter-

JIEP. — M., 2022, tome g



6 C. BouskL & N. JuiLLer

In fact, a deeper convergence statement holds than that resulting from point (iv)
above. Indeed we introduce the following notion of a measure in Marg((p)rer) “turned
into a Markov law at a finite set of instants”, denoted in a way that is consistent with
the notation of Theorem A(iv).

Prorostrion/Norarion 1.10. — If P € Marg((ue)ier) and R C R is finite, there is a
unique measure in Marg((u:)icr), denoted by Pygj, such that:

~ Py is the law of a family of variables (Xt)ier that is “Markov at the instants
of R” i.e., (1) holds with “v's € R” instead of “¥s € R”,

— for the closure I of each connected component of R \ R, (projl)#P[R} =

(projl)#P.

This proposition follows from the way we define Pgj in Definition 4.18, using the
concatenation of transport plans given by Definition 2.8. We show:

Turorem B. — There is an increasing sequence (R, )nen of finite subsets of R such
that Qqr,| € Marg((p¢)tcr) converges weakly to IMMQ.

Reminper 1.11. — A sequence (P,), of (probability) measures on some measurable
topological space E converges weakly to P if, for all bounded continuous function f,
[ fdP, — [ fdP. For E = RE with the weak topology, this convergence amounts to
the weak convergence of all finite marginals.

Remark 1.12. — Of course, not every sequence (R, )nen is admissible for Theorem B.
In fact, we prove a more precise version of Theorem B, see Theorem 4.21. It introduces
the notion of essential atomic times of (ut): that turn out to be the times contained
in {J,, Ry, for all sequence (R, ),en admissible for Theorem B; see also Remark 1.26
in this introduction.

Our problem: a classical type of question. — The problem of defining a measure or a
process P with given marginals and additional properties is a general problem that
includes the Main Problem and has already been explored several times in pure and
applied Probability Theory as well as in Analysis or Dynamics. Without claiming
exhaustiveness on this rich topic we review some research streams and provide refer-
ences.

A result related to Theorem A(b) is proved by Kamae and Krengel in [26]. The
measures (u;)er are in P(E), where E is a partially ordered Polish space. Assuming
the measures in stochastic order, in a suitable sense, the authors prove that there
exists an increasing process in Marg(u). Other orders can be considered together with
expected properties on the processes. For E = R¢ Chapter 8 of [43] proposes plenty
of orders. In Stochastic Analysis and Mathematical Finance, the topic of peacocks
and their associated martingales is closely related to our problem. “Peacock” stands
for PCOC: Processus Croissant pour 1’Ordre Convexe (French), that is, increasing
process for the convex order. One aims at defining a martingale in Marg(u), where
i = (pt)ier are the marginals of some peacock, using various techniques. Most of

JE.P.— M., 2022, tome g



Tre MARKOV-QUANTILE PROCESS 7

the time the peacock is part of a specific class, so the purpose is more specific than
the work of Kellerer presented in Section 1.3. In most of this literature (see e.g.,
[14, 11, 9, 36, 24, 16, 19, 22, 39] and the references therein) the martingales may or
not be Markov. The papers by Lowther [35, 34] on limits of diffusion processes for
the finite dimensional convergence permitted some authors to refocus on the Markov
setting (see, e.g., [3, 20, 23]), rediscovering Kellerer’s work by the way. Lowther’s proof
consists in adapting the local volatility coefficient of a SDE without drift—as indicated
by Dupire in his very influential note [11] on financial engineering—in order to match
the marginals of (u:)ter mollified in time and space. The solution being Markov-
Lipschitz the “demollification” happens in such a way that the Markov property is
preserved at the limit.

At last, an important example in the topic are the fake Brownian motions, that
are processes sharing some of the properties characterizing the standard Brownian
motion: they are continuous Markov martingales with marginals u; = N(0,t). See,
e.g., [36, 15, 1, 38, 21, 16] for examples of constructions.

1.3. Rerarions 1o KeELLERER'S THEOREM. If you forget about MM itself, Theo-
rem A(b) gives the following existence property.

Corovrrary 1.13. If (1e)ter € P(R)R is increasing for =g, there exists a Markov
process X = (X;)ier : @ — RE such that Law(X) € Marg((u;):) and that the trajec-
tories t — Xy(w) are increasing.

This extends to the case of the stochastic order the famous theorem of Kellerer on
martingales and submartingales with given marginals, Theorem 1.17 below. Our The-
orem C recovers, with a different proof, Kellerer’s result, as well as (simultaneously)
Corollary 1.13 on increasing processes. The proof of Theorem C is also completely
independent of that of Theorem A. Moreover, the method used to show it leads to
an existence statement for certain Markov processes, Theorem 2.26, omitted in this
introduction. To state Theorem C we need to recall two definitions.

Derinition 1.14. — Two measures p and v on R, with finite first moments, are said
to be in convex order =<¢, respectively in convex stochastic order <¢ 0, if for every
convex, respectively convex increasing function ¢:

(3) /g@du</g@dy.

Notice that pu =0 v if and only if (3) holds for (bounded) increasing functions ¢.
Now we define a martingale. We do it in the Markov framework (all we need), where
this is a bit simpler. We add in (c¢) a terminology of our own.

Derinirion 1.15
(a) A measure P on (R%)? is a martingale coupling if for every non-negative
continuous bounded function f : R — R:

(4) ] 1= 2apem) -

JEP. — M., 2022, tome g



8 C. BouskL & N. JuiLLer

Theorem C
(and Theorem 2.26)
Martingale Theory € Peacocks

Corollary 1.13,

L 593 Theorem A immediate | j ¢  enhancement
emma 2. 7

Fundamental Probability Theory of Theorem C
l in the case of =0
Theorem B

Stochastic Processes

|

Main Theorem of the companion paper [8]
(and other theorems of it)
Optimal Transport & Continuity Equation

Ficure 1. Main theorems: interdependence and field of application.

For T C R, a Markov measure P on (R%)7 is a Markov martingale if for every
{s,t} C T with s < t, the coupling (proj*")4P is.

(b) When d = 1, submartingale couplings and Markov submartingales are defined
alike, the integral in (4) being non-negative instead of null.

(c) A measure P on R? is called an increasing coupling if

P({(z,y) eR*: z <y}) =1,

ie., P = Law((X;)icq1,2y) where X1 < Xp. For T C R, we say that a measure P
on RY has increasing couplings if all (proj**), P have so.

Remark 1.16

(a) If a measure P on R is the law of a process with increasing trajectories, as in
Theorem A(b), P is in case (c) of Definition 1.15. Actually a classical type of reasoning
shows the converse, see Lemma 1.19 below. So the result in Corollary 1.13 amounts to
giving the existence of a Markov measure P € Marg((p:):) with increasing couplings.

(b) Take T C R. If there exists P € Marg((p)te7) as defined in case (a), (b), or (c)
of Definition 1.15, then it is immediate that (u:); is respectively increasing for <¢,
=Csto OF =sto- When #T = 2, by Strassen’s theory [44], the converse is true. More
generally, it is also true when T = N; one can deduce it by a quite simple induction
based on the Markov concatenation (Definition 2.8).

The converse part of Remark 1.16(b) is a much more delicate question when T = R
than when T is {0, 1} or N. Kellerer answered it for <¢ and <¢ g0, as follows.

JE.P.— M., 2022, tome g



Tie MARKOV-QUANTILE PROCESS 9

Turorem 1.17 (Kellerer, [28, Th. 3], [29]). If (ut)ier is a family of probability mea-
sures on R, increasing for <¢ (or 2c.sto0), there is a Markov measure P € Marg((14:)+)
which is a (sub)martingale.

Kellerer’s Theorem remains unproved for vectorial measures, see Open ques-
tion 5.5.2. This is a major motivation to search new methods to construct or to
establish the existence of certain Markov processes, as it is done to prove Theorems A
and C. Following Kellerer’s line of proof, but replacing one of its key lemmas by
another one (see details below), we prove its following generalization.

Taeorem C. If (1e)ter is a family of probability measures on R, increasing for
=, 2Csto OT Zsto, there is a Markov measure P € Marg((p):) which respectively is
a martingale, is a submartingale or has increasing couplings.

Using Remark 1.16(a), one sees that this theorem proves Corollary 1.13, that fol-
lows from Theorem A, by another way.

Kellerer’s proof uses a continuity result for certain kernels, recalled in Lemma 2.19.
We replace it by Lemma 2.23, a continuity result for the increasing kernels of Defini-
tion 1.6. A form of Lemma 2.19 appears in every proof of Kellerer’s theorem we know
[28, 29, 35, 20, 3], so that in this respect our proof, resting on another type of kernels,
is new. About Lemma 2.23, the following comments, that also appear in Figure 1, are
in order.

— It is a significant result of this article; Section 3 is devoted to its proof.

— It is not used in the proof of Theorem A, so that the proofs of our Theorems A
and C are really independent. They bring separately Corollary 1.13, an enhancement
Theorem C in the (new with respect to Kellerer’s work) case of <to.

— It plays a prominent role in Theorem B, see p.51, and as a consequence of it,
in the results concerning Optimal Transport and the Continuity Equation established
in the companion paper [8].

Remark 1.18. — The Doob—Meyer decomposition theorem of some submartingales in
a sum of an increasing process and a martingale is another reason our generalization
of Theorem 1.17 to =g, is a natural work.

We also mention that Kellerer seems to have never considered the question of the
extension to =g, in his papers. However in [30] with application in [31], he explored
the related question of the existence of increasing couplings P € Marg(u, v) that are
as independent as possible, in a suitable sense.

Finally, here is the lemma announced in Remark 1.16(a), yielding Corollary 1.13
from Theorem C. It is proved p. 30 in Section 3.4.

Lemmva 1.19. — If P is a probability measure on R® with increasing couplings (see
Definition 1.15(c)), there exists an increasing process X = (X¢)ter : @ = R, d.e., the
functions t — Xy(w) are increasing, such that P = Law(X).

JIEP. — M., 2022, tome g



10 C. BouskL & N. JuiLLer

1.4. APPLICATION TO THE CONTINUITY EQUATION AND ITS TREATMENT IN OPTIMAL TRANS-
port Tureory. — A striking commutation between the notions of curves (continuous
functions defined on intervals) on the space of probability measures and the proba-
bility measures on the space of curves is showing up in Optimal Transport Theory.
In a parallel paper [8], as an application of the present paper, we show how the
Markov-quantile can enhance this connexion in the direction of Stochastic Processes,
see Figure 1. In this paragraph we explain this briefly. To show how 9 enters this
field, we need first a few words of context. All the rigorous definitions are given in [8].
It can be deduced from Ambrosio, Gigli and Savaré’s major contribution [2] that the
Lagrangian formulation of Benamou-Brenier formula [6] is as follows. For any two
given measures g, g1 (with finite second moment) over a metric space (X, d) there
exists a process X = (X;);eo,1] for which: (i) Xo ~ po and X; ~ p; (ii) the infi-
mum value of E(€(X)) is attained, and equals Wa(j10, 11)? the square of the famous
Wasserstein distance, also known as transport distance. The (random) quantity €(X)
is called the kinetic energy of the (random) curve X = (X;);e[,1]- Informally, it is
“ fol | X¢|? dt” and makes sense for absolutely continuous curves of order two on a met-
ric space. In particular, for a curve p = (i)se[0,1] interpolating {1, 11}, the energy
&(p) is computed in the Wasserstein-space (P(X), Wa). One has E(E(X)) > E(u) as
soon as Xy ~ p; for every t € [0,1]. Lisini proved [33] that this lower bound &(pu) is
attained by some X.

We prove in the Main Theorem of [8] that, for X = R, the Markov-quantile process
is such a minimizer, and hence that the minimizer can be made Markov. After adap-
tation, Theorem B provides moreover a uniqueness statement that we would find
extremely interesting to extend to the Wasserstein space over any (Polish) metric
space (the open problem is formally stated in [8]). For a taste of it, in dimension 1,
see the examples in Section 5.2 and the related open problem in Section 5.5.4).

1.5. A FIRsT INSIGHT IN THE MARKOV-QUANTILE PROCESs. — We build the Markov-
quantile process MO ((u¢):r) answering the Main Problem in elementary examples
of increasing difficulty, where what it shall be is clear. This makes the generalization
of this construction, i.e., solving the Main Problem, a natural goal. Trying to achieve
it by a naive strategy will then reveal its difficulties.

Norarion 1.20. — In Section 1.5 we denote the Lebesgue measure on [0, 1] by A, on R
by dz, Ag or also A when there is no ambiguity, on R? by Aga.

Exampre 1.21. — Define p = (ut)ter by:
Wy = 50 ift=0 and: Mt = ﬁjl[o,lt\]dx ifte R~ {O}

The quantile trajectory (X;(a))ier associated with the level « € [0,1] on the prob-
ability space Q = ([0,1],A) is t € R — «t|. The process X is not Markov because
at time t = 0, with information on (X}):<o, we better know (X;);>o—actually here,
we determine it completely. A modification makes X Markov. Namely, consider the
concatenation X[ at time 0 of t € R~ + a(—t) and t € Rt — Bt, where (a, ) is
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uniformly picked in [0,1]?, in place of & = § picked in [0,1]. Then X% is the only
possible answer to the Main Problem: it is Markov (hence (X;);<o and (X;);s0 are
independent) and equal to the quantile process where the latter is Markov. Moreover,
it satisfies the properties of Theorem A, so it is the Markov-quantile process.

Derinition 1.22. — A measure without atom is said to be diffuse. We say that t is
an atomic time of a family (u¢)iecr of measures if p; is not diffuse.

Exampre 1.23, Now take po any non-diffuse measure and, for ¢ # 0, u; any diffuse
measure, for instance g * 6;, where 6; stands for p; of Example 1.21, or py = A. The
quantile process is (X;); = (min{x € R : u;(J]—o0,2]) > a}); restricted to R~ or RT
it is Markov. Pick B uniformly on [0,1]. On ([0, 1]%, A ® )), we consider the modified
process X% defined by:

Xi(o) ift<0
0 t <
XL[ ](avﬁ) = _ + _ .
Xi(a™ 4+ Blat —a™)) itt >0,
where ot = a” = «a if pg(Xi(a)) = 0, and otherwise Ja™, at[ is the maximal open

interval such that Xo(a') = Xo(«) for all &' in it. Let us introduce I, = {a} in the first
case and I, = Ja™,a™[ in the second one. Conditionally on the fact that X(EO] equals
some atom zg = Xo(@) of pg, the values of Xt[o} for t > 0 are made independent
of those of Xtm for ¢ < 0. Indeed, the vector (a,a™ + B(at — a7)) is uniformly
distributed on Iz x I5: this generalizes Example 1.21; X% is Markov and has law

MO € Marg(p).

Exampre 1.24. — When the set R of atomic times of (it ):er is finite, one may repeat
at each r € R the independence operation described above at time 0, to produce
a Markov process. Moreover, one may check that it does not matter in which or-
der, because these operations commute. The resulting process is indeed our Markov-
quantile process. With the notation of the paper, its law is Q). Similarly it is easy
to imagine the Markov-quantile process when the atomic times form a locally finite
set, like, e.g., Z.

Remark 1.25. — See Section 5 for more examples of Markov-quantile processes.

The situation becomes complicated when the set A of atomic times is not locally
finite or even worse, uncountable. Consider the following a priori reasonable approach.
Let (Ry,)nen be a nested family of finite sets such that R = J,, Ry is dense in A.
We consider the sequence (Q[r,,)» and hope for a limit Q). Then we encounter three
problems:

— By compactness of Marg((¢)¢), (Q[r,])» has an accumulation point (see similar
reasonings in [19, 24, 26, 33, 46]), but it has no reason to be unique.

— If A is uncountable, this limit needs not to satisfy the Markov property (1) at
times s € A \ R, at which we did not perform the modification of Examples 1.21—
1.23. A continuity assumption on ¢t — i could let hope to yield it (this was used, with
other goals, for measures in stochastic or convex order, see, e.g., [3, 20]) but we do

JIEP. — M., 2022, tome g



2 C. BouskL & N. JuiLLer

not make such an assumption. Also in the “space of quantile levels”, the irregularity
may be maximal: the set {(¢,a) € R x [0,1] : X;(a) is an atom of y;} needs not to
be measurable.

— Anyway, limits of Markov processes are in general not Markov so here, prop-
erty (1) is not ensured even at s € Ro.. To our knowledge, before the present paper
this type of problem had principally one solution, based on Lipschitz kernels (see
Lemma 2.19), first discovered by Kellerer [28, 35, 20, 5, 3]. However, see [37, Lem. 5.3]
for a different statement.

Another consequence of this non stability of the Markov property is that it is also
not possible to consider the sequence of quantile processes for mollified curves p(™ =
(4t * 0p,)¢, relying on the fact that all the measures ,ugn) are diffuse, so that each

Qe Marg((ugn))te]g) is Markov.

Remark 1.26

(a) In fact, the convergence in our Theorem A(iv), and hence in its enhancement
Theorem B, rests on the order =<, introduced in Definition 3.4: for all s and t > s, the
choice of the times r; follows from that of a sequence in some set of measures, tending
to the supremum of this set for <)o, see Lemma 4.10, in particular its point (c).

(b) As the examples above suggest, for all s and ¢ > s, the composition appearing

in point (iv) of Theorem A needs only using couplings 9, where the times r;

Ti+1
are atomic. Adding non-atomic times has no effect. Similarly, in Theorem B, that
provides nested finite sets R, such that Qr,; — MQ, R = |J, R, may avoid all
non-atomic times.

Now it appears moreover, but only as a consequence of Theorem A once it is proved,
that all the atomic times of (u¢): do not play the same role:

— Some are “essential” (see Definition 4.25). All of them that lie in |s, ¢[ must
eventually appear among the r; in Theorem A(iv), and all of them must belong
to R in Theorem B. This is possible as they turn out to be at most countable
(Proposition 4.26).

— One may choose the r; in Theorem A, or R in Theorem B, so that they
avoid any fixed finite set of the other atomic times.

Therefore, the intersection of the sets R satisfying the convergence property of The-
orem B is the set of the essential atomic times.

The existence, for any sequence ()¢, of the set of its essential atomic times, at
most countable even if the set {(t,a) € R x [0,1] : Xy(«) is an atom of p;} is
not measurable, is in itself a significant result of this article. Perhaps does this notion
admit generalizations when the set of parameters or the measurable space, both equal
to R in this work, are more general spaces.

Remark 1.27. — Tt is also very important to notice that as soon as the set
{(t,a) e R x [0,1] : X;(«) is an atom of p;}

is regular enough (see the examples of Section 5 for clearly stated instances of this), the
Markov-Quantile process may be explicitly computed, as it is done in the important
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Example 5.1. More generally, certain properties of this set and of 9 are linked,
see the whole of Section 5. Through its various examples, that section gives also an
intuition of how 9Q behaves.

1.6. ORGANIZATION OF THE PAPER. — In Section 2 we introduce in Section 2.1 kernels
and transport plans, their composition and concatenation, and the Markov property
expressed in this language. We give in Section 2.2 the structure of Kellerer’s work
[28, 29], explain why it motivates our reasoning towards Theorem C, and prove the
latter. However, we postpone the introduction of one auxiliary notion, and the proof
of Lemma 2.24 and of the essential Lemma 2.23 to Section 3. In Section 2.3 we state
and prove the “Markovinification” Theorem 2.26.

In Section 3 we introduce the auxiliary notions and results leading to the proofs of
Lemmas 1.19, 2.23 and 2.24, then also used in Section 4, namely:

(a) the “lower orthant” and stochastic orders, related suprema and the notion of
increasing kernel in Section 3.1,

(b) the quantile transport and the notion of minimal coupling in Section 3.2,

(c) two distances, p and p, inducing the weak topology on spaces of transport plans
Marg(, v) in Section 3.3.

Lemma 1.19 is proved in Section 3.4 and Lemmas 2.23 and 2.24 are in Section 3.5.

Along the way, Section 2.1, Section 3.1, and Section 3.2 also give all the background
to understand in detail the three properties (i)—(iii) characterizing 9£ in Theorem A.

In Section 4 we prove Theorems A and B: in Section 4.1 we explain how the situa-
tion may be pushed forward to the space [0, 1] of “levels of quantiles”, in Section 4.2
we prove Theorem A, i.e., build the Markov-quantile process, and in Section 4.3 we
state and prove Theorem 4.21 which is a more precise and complete version of Theo-
rem B. To do this we introduce the essential atomic times of (pt)s.

In Section 5 we exhibit the Markov-quantile process in a series of examples, state
three last remarks about Theorem A, and give open questions.

Note. — When we introduce various tools, sometimes classical, we do it in a way
and with remarks adapted to our context. The reader already knowing them may
read quickly, taking notice of our few specific remarks, which are useful in the rest of
the article.

1.7. Notrarion

(a) We gather in Table 1 the places where the notation we use widely is introduced,
so that the reader can find them quickly if needed.

(b) In this article, R* or N* means R\ {0} or N\ {0}. If ' C E, 1p- : E — {0,1}
is the indicator function of E’ and, if 4 € M(E), u|g stands for 1z p. The Dirac
measure at x € F is denoted by ¢, and A stands for the Lebesgue measure on [0,1], R
or R?. Most of the time we deal with Aljo,1] 80, when there is no ambiguity, we simply
write A in this case.
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‘We introduce: in:

M(E), P(E), projw,, P! (similarly T*), P5* the set | Notation 1.2
Marg((pr)re7)

the quantile process Q Reminder 1.4
9 again, together with the quantile coupling Q(u, v) Definitions 3.18 and 3.20, Notation 3.21
the stochastic order <g¢o Reminder 1.5
MmO Definition 4.16(b)
if P is some process, R C R and §R < oo, P Notation 1.10, Definition 4.18
=<c and =<¢sto Definition 1.14
A Notation 1.20
the composition k . k' of kernels Section 2.1.1
the kernels kp Notation 2.2
idg Notation 2.4
Joint(pu, k) Notation 2.5
the transport plans Idz ,, and Id, . Notation 2.6
if P is some process, 'P Definition 2.7
PoP Definition 2.8
NLK Definition 2.16
NI Notation 2.25,
z < y when (z,y) € (R?)? Notation 3.1
F,, or F[u], if u is some measure Definition 3.2
o =10 V Definition 3.4
losup,. Pr Definition 3.5
M), P(), M () and P> (p) Notation 3.13
G, Definition 3.23
T Notation 3.1
the distance p Notation 3.27
P Section 3.3.2
the kernels ¢, k, and *k,. Notation 4.2
Az, Ay and £, Notation 4.4
Lp, for RCR Notation 4.10
Lr Notation 4.11
Lev Definition 4.19

TasrLE 1. Places where our notation is introduced

If f: E — F is measurable and p € M(E), fup € M(F) is defined by fap(B) =
u(f~1(B)). Product measures are denoted by u ® v. If f and g are functions, f ® g
stands for (z,y) — (f(z), g(y)).

(c) Recall also Convention 1.7: introducing {ri, ..., rm,} or m-tuples ()", of real
numbers, we mean implicitly that r < --- < 7.

Vocasurary 1.28

(a) Similarly, Table 2 gathers our common vocabulary.

(b) When transport plans P and @ are composed, we call “composition” the oper-
ation, and “product” its result, see 2.1.2.

(c) We need a name for curves (u:)ier with the property ps < py for any s < t.
If we call them “non decreasing”, the standard terminology when the order is total,

JE.P.— M., 2022, tome g



Tie MARKOV-QUANTILE PROCESS B

For: See:
process and marginal (law) Reminder 1.1
canonical process, coupling & transport (plan) Reminder 1.3
martingale, submartingale & increasing couplings | Definition 1.15
atomic & essential atomic times Definitions 1.22 and 4.25
increasing kernel Definitions 1.6 and 3.11
Lipschitz kernel Definition 2.16
quantile coupling & quantile measure Definitions 3.18 and 3.20
atomic levels Notation 4.4
a process “M made Markov at the points of R” Definition 4.18

TasLe 2. Places where our common vocabulary is introduced

the readers may imagine that the relation we consider is the contrary of us > py
(for any s < t). But in a poset the contrary of a > bis (a < b or “a and b are not
comparable”). To avoid ambiguity, we prefer to call it with a positive term, namely
“increasing”. Similarly, we use “non increasing” instead of “decreasing”. This conven-
tion is chosen in many articles dealing with our topic, e.g., [43, 26, 34, 20]

Acknowledgements. The authors wish to thank Jiff Cerny, Martin Huesmann,
Christian Léonard, Emmanuel Opshtein and Xiaolu Tan for bibliographic or editorial
suggestions as well as Michel Emery and Erwan Hillion for discussions on examples
related to this work.

2. AN EXTENSION OF A THEOREM OF KELLERER

2.1. Tur MARKOV PROPERTY, COMPOSITION AND CONCATENATION OF KERNELS AND TRANS-
poRT PLANS. — Everywhere E, E', E" etc. are topological spaces (or sometimes Polish
spaces) and B(E), B(E’) and B(E") their Borel o-algebras.

DeriNirion 2.1, A probability kernel, or kernel k from E to E’ is a map
k:ExB(E") — [0,1]

such that k(z,-) is a probability measure on E’ for every z in F and k(-,B) is a

measurable map for every B € B(E").

Probability kernels are usually interpreted as transition matrices, see Remark 2.3:
after one step a particle at x in E arrives at a random position in E’, distributed with
respect to k(z,-). We often have that interpretation in mind.

Remark/Norarion 2.2. — Every transport plan P € P(E x E’) can be disintegrated
with respect to its first marginal P! := (projl) #P and a kernel that we denote by kp,
defined from F to E’, so that:

J[ s@naremn = [ ([ fenke.an) ara)

for every bounded continuous function f. Observe that x +— k(x,-) is P'-almost surely
uniquely determined.
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16 C. BouskL & N. JuiLLer

2.1.1. Composition and action of kernels. Kernels k from E to E’ and k' from E’
to E” can be composed as follows:

(k. K)(x, A) = / K (g, A)k(, dy).

’

Similarly, acting on the right, kernels from F to E’ transport, or send positive mea-
sures 6 on F on positive measures on E’. Acting on the left, they send (adequately
integrable) functions f : E/ — R, on functions £ — R:

(0. F)(A) = . k(y, A)0(dy) and: (k. f)(z) = . fy)k(z, dy).
Associativity holds, e.g., (k. k) . k" =k . (k' . k"),and 0. (k. f) = (6 .k) . f, where
the action of measures on functions is the obvious one. This is consistent with the
following remark.

Remark 2.3. — We recall the usual interpretation of the composition as matrix mul-
tiplication. If B = {x;},, E' = {yj};.‘/:l, E" = {z}}", are finite, a measure
0 € M(E) is a row vector (0({z;})); = (0;)"_,, a kernel k from F to E’ is a
matrix k = ((k‘i,j)?:l)?,:l, where (k”);il is the measure k(z;, -) € M(E’), viewed as
a vector, and a function f from E” to R is a (column) vector f = (f(z]));’ll Then,
taking k' = ((k;k)?lzl)Z; a kernel from E' to E”, 0 .k, k. k' and &k’ . f introduced
above have the same sense as products of matrices.

Norarion 2.4. — We denote by idg the identity kernel (that acts trivially) (x, B) —
0-(B) = 1p(x).

Norarion 2.5. — With p € M(E) and k a kernel from E to E’ is naturally asso-
ciated the law Joint(u, k) € M(E x E’), having p as first marginal and the family
(k(z0,))zocr as laws (on E’) conditioned by zy € E:

VB, B € B(E) x B(E'), Joint(u, k)(B x B') = / k(z, B)du(z).
B
In particular, P = Joint(P!, kp).

2.1.2. Composition of transport plans. — If P € Marg(u, ') and @ € Marg(p/, 1),
we can compose them in a similar way as we compose kernels, getting the product:

P.Q = Joint(u, kp . kg) € Marg(u, p’’), so that: kpg = kp . ko-

Noration 2.6. — We denote ((Idg)f_;)zp € Marg((p)i—,) by Id, , or simply Id,
when there is no ambiguity. With n = 2, Idy ,, = Joint(u,idg). It is moreover the
identity transport: Idy , . P = P = P.Id3 ..

2.1.3. Action of transport plans on measures and functions. — If p € M(E) and p' €
M(E’), transport plans P € Marg(u, ') have an action similar to that of kernels
from F to E’, on (p/-almost surely defined) classes of functions f and on measures
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0 € M(E;u) absolutely continuous with respect to p. For instance, the latter are
transported in M(E’, u’), as follows:

if @ < p has density g and B’ € B(E'), / / x)dP(z,y).
If k is a kernel from E to E’, 0.k =0 . Joint(u, k). Conversely § . P =0 . kp.

DeriNition 2.7. — Take P € Marg(p1, ..., k), or P € Marg((put):er). We define its
transpose *P € Marg(ug, - .., p1), resp. *P € Marg((1—¢)ier) by: *P(By X -+ X Bg) =
P(By x -+ x By), resp. "P(I], B,) = P(I]; B-+.)-

The notation 'P is a reference to a transposed matrix in Remark 2.3. For P =
Marg(u, v) we will often consider the bilinear map

B:(0,f) — (OP)f = 0(Pf) = // Pda, dy),

where g is the density of 6 with respect to u. The case 0 = ji]]_oo 2], f = 1j_,y With
B(0,v) = P(]—00, x| x |—00,y]) is of special interest, see Section 3.1.

2.1.4. Concatenation of transport plans. (See, e.g., [28, p. 111], [46, p.23].)

Dernition 2.8. — If pu; € P(E;) for i € {1,2,3}, if Py o € Marg(ui, p2) and Pa3 €
Marg(ua, 13), their concatenation Py o o P 3 is the unique R € P(R3) such that for
every (Bi, By, Bs) € B(E1) x B(E2) x B(E3):

(5) R(B1 X By x B3) = / / / dpr () ks 2(x, dy) ke, 3(y, dz).
zeB, JyeBy J z€B3

In particular, R € Marg((p1, pa, i13), (proj*?)4xR = P o, and (pr0j2’3)#R =Py 3.

Remark 2.9. — Let k; ; be a disintegration kernel for P; ; and P51 := Py 5. The right
side of (5) also reads: [[5 , 5[5, k(y,d2)dP12(2,y), hence also:

(6) / // kal(yVdﬁ)k?,S(yvdZ),uz(dy).
YyEDB> 2€B1,2€B3

Concatenation is “reversed when time is reversed” in the sense that ‘P, 30 'P; o =
Y(Py 2 o Py 3); this is immediate after (6). Formula (5) gives immediately that o is
associative, leading to its following generalization:

PLQ O+++-0 Pn—l,n (HB7) = / d,ul(zl)kl,Q(xla d:l?g) e kn—l,n(zn—h dl’n)
i=1 (zi):€Il; Bi

Remark 2.10

(a) In Section 2.1.2, one can also define P. Q as proji’E”(P 0 Q).

(b) The composition and concatenation of transport plans find an easy inter-
pretation in terms of random variables. If (X7, X5, X3) is a random vector with
Law (X1, X2) = P and Law (X2, X3) = Q such that (X;);c1,2,3) is a Markov process
(X1 and X3 are independent conditionally on Xs), then P. @ is the law of (X7, X3)
and P o @ the law of (X7, X, X3), see (6).
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2.1.5. The Markoy Property. We introduce the Markov property here in an alter-
native, equivalent way to the usual one.

Remark/DeriNnition 2.11. —  As recalled in (1), a process (Xi)ier is said to be
Markov if:
VseR,Vt>s, Law(Xy| (Xy)ugs) = Law(Xy| Xs).

Denoting Law((X¢);) € P(R®) by P, this is equivalent to the fact that for all finite
subset S = {s1,...,84} of R, (projs)#P is the concatenation P%1%2 o ... o PSd-1,54,
where P?®i%i+1 denotes (proj{si’si“})#P. More generally, we say that any measure
P € P(RR) is Markov if it satisfies this property.

We extend these definition in the obvious way to processes indexed on subsets
R C R and measures on P(RE).

We recall the Kolmogorov-Daniell theorem and its usual corollary on Markov mea-
sures.

Prorosirion 2.12 (Kolmogorov—Daniell theorem). Let E be a Polish space and, for
each finite subset S of R, us be a probability measure on ES. If (projsl)#us = ug
for any S' C S, there exists a unique P € P(E®) with (projs)#P = ug for all S.

One of the most usual applications of Proposition 2.12 is for measures pg of type

Psy,s0 OO fhsy 1 sy, Where S = {s1,...,54}.

Cororrary 2.13. Let (ps,1)s<t be a family of transport plans in P(E x E) such that:
Hsu = st - Bt,u

for every s < t < u. Then there erists a unique Markov measure P € P(E®) with
Pt = s, for every s < t.

Derintrion 2.14. — It is usual to call consistent family every family (p1s)g or (fs,t)s<t
as in Proposition 2.12 and Corollary 2.13.

2.2. KELLERER'S WORK. OUR MOTIVATION AND PROOF OF TrrEorREM C. — In [28] and [29],
Kellerer proves the three results that we reproduce as Theorem 2.15, Lemma 2.19 and
finally Theorem 2.21, which is a more precise version of Theorem 1.17 given in the
introduction. He also introduces Definition 2.16. As we will see Theorem 2.15 extends
Corollary 2.13: take Ny = {fs¢}-

Our goal here is to prove Theorem C. To put forward quickly both the background
and our reasoning we postpone all the intermediate proofs, as well as the introduction
of the technical tools they require to the next section.

Kellerer first proves the following statement—we give the sketch of proof on p. 21.
It seems a bit stronger than in [28] but is what he actually shows.

Tueorem 2.15 ([28, Th.1]). — Let (ut)ter be a family of probability measures on
some Polish space E, and for every s < t let Ny, C P(E?) be a set of transport plans.
Assume that:

(i) for every s,t, Ns 4 is not empty,
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(i) for every s,t, Nsp C Marg(jis, fit),

(iii) for every s,t, Ny, is closed for the weak topology,

(iv) forr <s <t and any (P,P') € Ny s x Ny, P. P € N, 4,

(v) for every d and t; < --- < tq, if the sequences (Qg)tiﬂ)n € Ny, t,,, converge
weakly to Q, ¢ then the sequence (Q?l,t2 0---0 Q?d—htd)n tends weakly to Qy, 1, ©
0 Quy ity

Then, there exists a Markov measure P € Marg((y);) with (proj®") 4P € Ny, for
every s < t.

i1

Derinirion 2.16 (28, Def. 3]). — Let (E, p) and (E', ') be two measure metric spaces
and P be in Marg(u, p'). Then P has Lipschitz kernel if for every 1-Lipschitz map
h:E — [0,1], P.h : E — [0,1] is also 1-Lipschitz, i.e., more exactly, there is
a 1-Lipschitz b : E — [0,1] such that h = kp . h, p-almost surely (see Notation 2.2
for kp). For (u;)ier € P(R)X, we denote {P € Marg(us, i1¢) : P has Lipschitz kernel}
by Nf;lf

Remark 2.17 gives some comments, Remark 2.18 is used in the following.

Remark 2.17

(a) The terminology “Lipschitz property” was introduced in [35, Def.4.1] for a
Markov process with Lipschitz transition kernels. It is renamed as “Lipschitz-Markov
property” by Hirsch, Roynette and Yor in [20]. The fact that this property is stable
for finite dimensional convergence of processes is crucial in these papers and in [34]
and appears as an avatar of Kellerer’'s Lemma 2.19 stating that the concatenation
operator o is continuous for the corresponding class of kernels. These kernels are
called Lipschitz in [23, 5] and the present paper, and Lipschitz-Markov in [3].

(b) You may compare Definition 2.16 with that of transport plans with increasing
kernel in Definition 3.11(b).

(c) [28, p.115] In case the topology of E and E’ is discrete, hence induced, e.g.,
by the distance d(x,y) = 1 — d5 4, every h is 1-Lipschitz; hence any P has Lipschitz
kernel.

Remark 2.18

(a) If some family (N, ,.)s,; satisfies the properties of Theorem 2.15, a family of
subsets (N ;)s with N, C Ny satisfies them as soon as it satisfies (i), (iii) and
(iv), (ii) and (v) being automatically true.

(b) For ()¢ any family of measures on R, it is easy to check that (NLY) <, satisfies
(i)—(iv) in Theorem 2.15 (for (iii), see [28, Satz 13]).

Lemma 2.19 (Continuity of o when the kernels are Lipschitz [28, Sétze 14 & 15])
If (Ey,ut) are complete and separable measure metric spaces, (NL

st )s<t satis-
fies (v) in Theorem 2.15.

Remark 2.20. In fact [28, Sitze 14 & 15] proves (v) for sequences (Qf. ., )n of
Markov-Lipschitz transports, without the assumption that the Q7 ;. have the same
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marginals for all n, though this stronger result is not used further in [28]. In our
Lemma 2.23 this assumption is crucial.

Finally Kellerer proves this more precise version of Theorem 1.17.

Tueorewm 2.21 ([28, Th. 3], [29]). If (ue)s is an increasing family of measures on R,
for Z¢ (or Z¢csto), there is a Markov measure P € Marg((i):) such that P is a
(sub)martingale and the couplings P*' have Lipschitz kernel.

Remark 2.22. To prove Theorem 2.21, by both points of Remark 2.18, and Lem-
ma 2.19, Kellerer has only to show that

(N’SI}K)K,& =({Pe€ Nl“lf : P is a (sub)martingale transport})s<;

—see Definition 1.15—satisfies Assumptions (i), (iii) and (iv) of Theorem 2.15 and to
apply this theorem. Checking (iii) and (iv) being easy, we see that the two important
facts enabling to use Theorem 2.15 and thereby getting Theorem 2.21 are:

(i) Lemma 2.19,
(ii) the proof of Property (i), i.e., the non-emptiness of the N/,

Replacing point (i) by an alternative version (i’), consisting of Lemma 2.23 below,
and proving a version of (ii) adapted to this change, we prove Theorem C. Namely
we prove that increasing kernels, introduced in Definition 1.6 (see also Definition
3.11 for more details), satisfy Lemma 2.23, a counterpart of Lemma 2.19, as well as
Property (iii), i.e., the little Lemma 2.24. They are proved respectively on p.34 and
on p.32. Then we prove Theorem C.

Lemma 2.23 (Continuity of o when the kernels are increasing). — Take (u1,. .., tn) €
P(R)™ and for all i € [1,n—1] a closed set J; ;+1 C Marg(u;, pi+1) of transport plans
with increasing kernel. The sets J; ;41 satisfy Property (v) stated for the sets Ny, 4
in Theorem 2.15.

i+1

Levmma 2.24. — Take p and p' in P(R). The space of transport plans with increasing
kernel in Marg(u, ') is closed for the weak topology.

Norarion 2.25. — If (us); € P(R)® is given, we denote
{P € Marg(us, 1¢) : P has increasing kernel}
by N?%

Proofof Theorem C. — Take (u:): € P(R)F, increasing for <¢ (case (a)), =csto
(case (b)) or for =<4, (case (c)) to prove the corresponding cases of Theorem C. In the
sketch of proof of Theorem 2.21 given in Remark 2.22, replace N% by N?% and intro-
duce, similarly as defined in Remark 2.22 for cases (a) and (b), the spaces N¥—equal
to {P e N5 : P({(z,y) € R?: x <y}) =1} in case (c).

Properties (ii)~(v) of Theorem 2.15 are satisfied by (NU)s<: (ii) by definition,
(iii) by Lemma 2.24, (iv) is straightforward and (v) by Lemma 2.23. By Remark
2.18(a) we are left with showing (i), (iii) and (iv) for (N/1{)s<¢. Plainly, the conditions
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defining the N as subspaces are closed and stable by composition, (iii) and (iv)
follow. For (i), in our three cases:

(a) By [3, §3.1], if P € Marg(us, u¢) is a martingale transport plan, then P €
NLK « P e NIK Therefore N2K =£ & if and only if N’“K = &, which Kellerer proved.
s,t s,t s,t s,t
b) The element of NK Kellerer built in [28, Def.7 & Th.2] is in NE when
s,t s,t

Hs jC Mt
(¢) As explained in Remark 3.24, Q(us, pt) € N’élff 0

For the completeness of this exposition, we also provide the following.

Sketch of proof of Theorem 2.15, in the manner of Kellerer. — Take S = {si1,...,54}
any finite subset of R. We introduce

NS1,S2O"'ON = {Nlo‘--ONd,1: ViaNieNti,tHl}

Sd—1,5d

and Lg = (projs);él(Nswz 00 Nsd,l,sd)-

Since proj® : Marg((u:):) — Marg((1us)ses) is onto (since for any 1 € P(ES),
(projs)#(n ® (®ser-stis)) = 1), (i) and (ii) imply that Lg # &; by Properties (iii)
and (v), Ny, s, 0+ 0Ny, _,.s, is weakly closed in P(E?) hence so is L.

By [28, §1.2] or [3, §2], Marg((u¢)ter) is weakly compact, so that Lr =
Nscr finite 5 7 @. Indeed, else, Marg((u¢)icr) would be covered by the union
of open sets (Jg(R \ Lg), so that Lg, N---NLg, = & for some N-tuple (S;);<n of
finite sets. But by (iv), S € S’ = Lg C Lg, hence Lg, N---NLgy D Ls,u..usy # 9,
a contradiction.

Finally take some P € Lg. For every finite S = {s1,..., 54}, (projs)#P € Ny, .55 ©

---oN hence P is a Markov measure. O

Sd—1,5d

2.3. ReLATION TO THE MARKOV-QUANTILE PROCESS. What precedes provides also,
through the application of Theorem 2.15, the following existence theorem for Markov
processes being limits of products of transport plans taken out of a given process.
When applied to the quantile measure Q € Marg((pt):) introduced in Section 3.2,
it provides the existence part of Theorem A, see below.

Turorewm 2.26 (Markovinification). — Let P be a measure of P(R®) with marginals
(p¢)ter- If for each s and t > s, P*t has increasing kernel, there ewists a Markov
measure P’ in Marg((ut):) such that each P'® is a limit of products P™ ... Prmt
with {r1,...,rm} C ]s,t[. One may take P’ such that for each (s,t), the limit is
obtained with a sequence ({r},... r"

m(n)})n such that maxzn:(g) [Pet1 — Tkl = noool,
where (ro, Tmt1) stands for (s,t).

Proof. — If t > s, setting P[‘E =Psm ... Pt forall R = {ry,...,rm} Cls,t[,

we introduce

Ngi) = Do P[s]% s maxl ) [rre1 — x| < o},
o

where (rq, 711) stands for (s, t). It is included in NI by Lemma 2.24, and it satisfies
Assumptions (i), (iii) and (iv) of Theorem 2.15. Indeed, for (i), Ngi) # & as an
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intersection of nested non-empty compact (closed in the compact space Marg(us, 1))
sets; (iii) is true by definition, and (iv) by Proposition 3.38. Thus by Remark 2.18(a),
Ng) satisfies all the assumptions of Theorem 2.15. We are done. (Notice that the

alternative definition NS;) = {P[Sfﬁ} would have given the same result, except its last
sentence.) O

Note that if P is Markov the spaces Ng) and {P[S]jﬁ} are both reduced to {P*'},
so that the Markov measure obtained from any of them is P itself. This conservation
property also holds locally on intervals I C R if (P;);cs is Markov. Notice also that
Theorem 2.26 does not require (p)ier to be increasing for =<go.

Theorem 2.26 links Section 2 with the Markov-quantile process 91Q built in Sec-
tion 4. Indeed, taking P = 9, Q%! is in N?ﬁ for all s < t by Remark 3.25, so

Theorem 2.26 gives the existence of a Markov process with 2-marginals in Ngi‘) (here

equal to {Q[Sg]}). We prove in Section 4, by completely different means, that:

— this process is unique,

— it may be built using the order =g, (see also Remark 1.26), instead of being
obtained by a non-constructive compactness argument.

This is Theorem A. See also Open question 5.5.1.

3. THREE AUXILIARY NOTIONS, AND POSTPONED PROOFS OF THREE LEMMAS

The next section introduces the notions needed to prove the results of Section 4
below. They are also necessary for the proofs of three lemmas that were therefore
postponed: Lemma 1.19 on versions of increasing processes, the important Lemma 2.23
on the continuity of o when the kernels are increasing, and Lemma 2.24.

3.1. LOWER ORTHANT AND STOCHASTIC ORDERS, RELATED SUPREMA, AND INCREASING KER-
NELS

Norarion 3.1

(a) Let us denote (z;)%, and (y;)L, in R? by 2 and y. We endow R? with the
natural partial order defined by:

r<y ift Viz; <y

We also set [z,y] == {z € R? : 2 < 2 < y} = [[,[2i, %] and similarly ]z, y], etc.
In particular |—oo, 2] = |—00,21] X « -+ X |—00, Z4].

(b) Several times appear statements where some intervals have to be considered
closed or open at some of their bounds, either arbitrarily or depending on possible

cases. To alleviate the writing, we introduce the symbol “[” and place it at these
bounds.

Derivition 3.2, — If p € M(RY), its cumulative distribution function F},, that we
also denote by F[u] to avoid multiple subscripts, is defined, using Notation 3.1, by:

F,:reR— p(]—o0,7]).
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Tie MARKOV-QUANTILE PROCESS 23

Reminber 3.3. Recall for instance from [25, Th.3.25] that such functions F are
characterized by the fact that:

(a) for the natural partial order of R? (see Notation 3.1), F is increasing and upper
semi-continuous in the sense that for all 2 € R%:

(7) Ve>0,3n>0,Vy=>z, |y—2)<n = F(z)<F(y) <F(z)+e.

(b) liMuypin, (2:)——oc F(x) = 0 and limyyin, (2,)—+00 F () = 1,
(c) for every h = (h1,...,hq) € [0,+00[? and = € RY, the quantity

Z o(e)F(x + eh),
which is the measure of the rectangle |z,z + h] C R? is non-negative. Here ¢ =
(€1,...,€4) Tanges over {0,1}4, o is 1 if > e; is even, —1 otherwise, and ch means
(e1ha,...,edha).

Derintrion 3.4. If d € N* and m € ]0,+o0|, following [43, §6.G], we define the
lower orthant order on {u € M(R?) : u(R?) =m} by: p <o v if F, > F,.

Derinirion 3.5. — We call lower orthant supremum of a family (P;),cq of measures
of same mass m on R, the smallest upper bound of {P;}, for =,, if it exists, i.e.,
a measure P of mass m such that:

— for every 7, P, <), P,
— P =, Q as soon as P =), Q for every 7.

By definition, if it exists it is unique. We denote it by losup, P;. Similarly we define
loinf, P;.

Remark 3.6

(a) In Reminder 3.3, (a) and the first limit of (b) pass to the infimum of functions
that are both monotone and upper semi-continuous. If moreover (P;), has an upper
bound P, then the second limit of (b) holds. Indeed, for all 7, F[P.] > F[P], so that
inf, F[P;] > F[P], and besides limin, (2,)—+o00 F'[P](z) = 1. Thus, if (P;). is bounded
from above, inf,; F'[P;] satisfies (a)—(b) of Reminder 3.3, so is a cumulative distribution
function if and only if it satisfies (c).

(b) If (c) of Reminder 3.3 is satisfied by the functions F[P;], then (P;), has a
lower orthant supremum, and F[losup, P;] = inf, F[P,].

Remark/Norarion 3.7. — If d = 1 the order =<, is usually called stochastic order and
denoted by =t0; we will then call “stochastic supremum” the lower orthant supremum
of Definition 3.5 and denote it by stosup.

Lemma 3.8 (Existence criteria for losup)

(a) If, for =10, a sequence (Py)nen € (P(RY))N is bounded from above, and increas-
ing, i.e., n<m = P, X1 Py, then losup,, P, exists and (Py,)n converges weakly to it.
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(b) If a family (Pr)rcg is bounded from above for =<\, and if for every 7,7" € T
there exists o € T such that P, =, P; and P, >\, P/, then losup, Pr exists and
there is an increasing sequence (P ), that converges weakly to it.

The results extend in an obvious way to measures of mass m > 0 in M(R).

Proof

(a) Set F' := inf, F[P,]. After Remark 3.6, showing that F' satisfies (c) of Re-
minder 3.3 ensures the existence of losup,, P,,. Consider M =) _o(e)F(x+¢ch) as in
Reminder 3.3(c). Since F[P,] is decreasing, F' is its simple limit, so M is the simple
limit of > _o(e)F[P,](z + €h), hence M > 0. We are done. The weak convergence
is given by the pointwise convergence of the cumulative distribution functions, see
Reminder 3.26.

(b) This is a diagonal construction. Let C = |J,cy{zx} be a countable dense set
in RY. Set F := inf,cq F,. Then for every (k,n) € N*2 we find 7%, € T such that
F[P;, (zk) < F(zx) + 1/n. For each n, by a finite induction using the assumption
of (b)'on the P, ., we find 0, € T such that: Vk < n, F[P, |(z)) < F(xy)+1/n and
(P, )n is increasing. Hence:

(8) Ve e, FI[P,, ](x)— F(x).

By (a), P =losup,, P,, exists and:

9) Vo eR?Y,  FI[P, ](z) — F[P|(x).

Let us prove that (8) holds for any = € R?, so that F' = F[P]. Assume by contradiction
that, for some z, F'(z) < inf,, F[P,, ](z), i.e., by definition of F', that for some 7 € T,
F(z) < F[P;|(z) < inf, F[P, ](x) = F[P](z). Now F[P;] is upper semi-continuous
so in a neighbourhood U of z in [z, +00[, F[P;] < F[P]. But on the dense set C, by (8)
and (9), F[P] = F, hence on UN C # &, F[P;] < F, a contradiction.

Finally F' = F[P], so F is a cumulative distribution function, so by Remark 3.6(b),
P =losup, g Pr. Moreover, P, — P. ]

Remark 3.9

(a) (Case d = 1) In this case, Reminder 3.3(c) is automatically true. Hence, in
Lemma 3.8, (a) is true for any bounded (P, ),, increasing or not, hence (b) shows that
any 8 C P(I) bounded from above has a stochastic supremum (which has though not
to be the weak limit of a sequence of elements of 8, consider

(61 + 82) = stosup{ 1 (6o + 62), 01 }.
Symmetrically, a family bounded from below has a stochastic infimum.
(b) Point (a) is false for d > 1. Cousider, e.g.,
§={P, P} = {%(5(1,0) +d(0,1))5 %(5(0,0) + 5(2,2))} C P(R?),

then inf{ F'[P;], F[Pz]} does not satisty (c) of Reminder 3.3 and § has no lower orthant
supremum: both P := %(6(171) +90(2,2)) and P’ := %((5(0?2) + 0(2,0)) are upper bounds
for it but no upper bound P” satisfies P <), P and P” =), P’ (observe F[P] and
F[P']).
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Remark 3.10. In the following we use several times the Lebesgue differentiation
theorem for Borel measures; a reference is, e.g., [12, §2.8-2.9].

Prorosirion/Derinirion 3.11. Take p and v in P(R). We say that a transport plan
P € Marg(u, v) has increasing kernel if one (and then any) of the following statements
holds:

(a) Initial definition: if 0,0’ < p and 6 and 0’ have he same mass, then 6 =<, 0’
implies 0 . P =<4, 0" . P.

(b) For every increasing h : R — [0, 1], P.h is p-almost surely increasing, i.e., more
ezactly, there is an increasing h:R— [0,1] such that, for every bounded continuous
function g:

/ o(2)h(y)dP(z, ) = / o(2)h(z)du(x).

(¢) There exists a kernel k in the p-equivalence class of kp such that x — k(zx,-)
is increasing from (R, <) to (P(R), Zsto)-

(d) There exists a random vector (X,Y) with Law(X,Y) = P such that z € R —
Law (Y| X = x) is increasing from (R, <) to (P(R), Zst0) (in the sense of the u-equi-

valence classes of increasing functions: it is increasing on a set of full measure FF C R).

Remark 3.12. — Be cautious that having increasing kernel is distinct from being an
increasing coupling, a notion defined in Definition 1.15(c).

Proof of the equivalence in Proposition 3.11. — Statements (c¢) and (d) are essentially
a change of notation. (To get (d) = (c), notice that for y in the g-null set R\ E of (d),
k(y,-) can be defined as stosup,c g ., k(z,); (c) = (b) follows from the definition of
P.h.) Let us show (b) = (a) = (c).

(b) = (a): if 6 240 0, take b : R — [0, 1] increasing, then (6. P).h=0.h <6 .h
since 6 <g0 0 and h is increasing by (b). Then ¢’ . h = (¢ . P) . h yields (a).

(a) = (c): Suppose (a) and set I, := ]—o0, ¢ for all g. We will build R C R, with
w(R) = 1, on which z < 2’ = k(z,1,) > k(2/,1,) for all ¢ € Q, hence all ¢ € R,
ensuring (c). By definition of the kernel kp, kp(.,I,) is the density with respect to p
of the measure B — P(B x I,;), thus by the Lebesgue differentiation theorem, setting
r(z,e) == P(lx — e,z +¢] x Iy)/pu(lx — €,z +¢]), the function z — lim.,o7(z,¢€) is
p-almost everywhere defined and equal to it. Now

1
r(z,e) = ((u [.”L' —ea+ E]).UJ\_[QJ—E,JU-&-E]) . P) (Iq)a
thus by (a), z < 2’ = r(z,e) > r(a’,e). Hence for all ¢ € Q there is some R, C R
with yi(Ry) = 1 on which z < 2’ = k(z, ;) > k(2',I;). Finally set R = o Ry. O

Norarion 3.13. — If p € M(R) we denote by M(u) and P(u) the sets of positive
measures, respectively probability measures, absolutely continuous with respect to u,
and M™(u) and P>(p), or M™> and P> if there is no ambiguity, their subsets of
measures with bounded and decreasing density.
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Remark 3.14. A direct consequence of the first point of Proposition 3.11 is that,
if P € Marg(u1,ue) and Q € Marg(us, us) have increasing kernel, so has the result
P. Q of their composition.

Remark 3.15 (M™ () is closed for the weak topology). A measure 0 belongs to
M (p) if and only if its density is bounded and, for all (a, b, ¢, d) € R*:

0([a,0]) _ b(c.d])

w(la, b))~ (e, d])

“Only if” is clear. For the “if” part, by the Lebesgue differentiation theorem,

(10) (a<b<c<dand p(la,b]) . u(led]) #0) =

provides a representative of the density. Now if a sequence (6,,), satisfies (10) and
weakly tends (see Reminder 3.26) to § € M(u), 6 satisfies it also (if a, b, ¢ or d is an
atom of 6, re-obtain (10) by limit of larger intervals).

Remark 3.16 (P has increasing kernel if and only if *P maps M™(v) to M™>(u))

In Proposition 3.11, (b) is equivalent to the same statement with decreasing func-
tions; in turn, transposing, this means that, for all decreasing h : R — [0,1], (hv).*P,
which is equal to (P. h) . u, has decreasing density.

3.2. QUANTILE MEASURES AND MINIMAL COUPLINGS. We define the quantile coupling
(Definition 3.18) and quantile process law (Definition 3.20) through a minimality
property that is crucial in our paper. We also state the direct and more classical
Definition 3.23 of the quantile measure. Further characterizations of these coupling
and process are given throughout the paper and in [8] where the approach is optimal
transport. The reader can refer to [41, 45] for more background. See also the papers
[23, 40].

Reminoer 3.17. — Take pand v in M(R). Every P of Marg(u, v) satisfies the Fréchet—
Hoeffding bound:

(11) Y (z,y) € R?,  Fp(z,y) < min(F,(z), F,(y)).
Prorosition/DeriNtrion 3.18. —  There is a unique P such that (11) is an equality.

We call it the Fréchet—Hoeffding, comonotonic or quantile coupling and denote it by
Q(p,v). Said briefly: Q(p, v) = loinf Marg(u, v).

The proof follows from Definition 3.23, see below.

Remark 3.19 (Minimality in the language of transport plans)

(a) The quantile process Q may also be defined by the fact that its transitions are
minimal among those of all transport plans of Marg(u, v): for any P € Marg(u, v) and
fixed z, Fp])—co,2] - kp](y) = Fp(z,y) for every y € R, hence, after Definition 3.18
and the characterization of stochastic order of Remark 3.9:

(12) VP e Marg(U7 V)7 ,ul_]foow] : D(,Uv V) Ssto ,U\_]foo,a:] ckp
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(in fact, p])—co,a]-Q(1, V) is of the type v[|_o y[+ady ), i.e., the quantile coupling maps
the measures ji|)_ 4 to the stochastically smallest possible measures, (12) being also
true for any 6 € M™(u) in place of 1] og 41-

Notice that a property similar to (12), with <¢ in place of =, defines the
(left-)curtain coupling in [4].

(b) As pljz,4+oo[- kP =V —|j—cc,a] - kPy 1)z, +00[ - 21, V) is paradoxically mazimal
for <40, hence minimal transitions mean that the mass of p is mixed as less as possible
when transported on that of v.

Prorosition/DeriNtrion 3.20. — If (ur)re is a family of measures, there is a unique
measure € Marg((p,)re7) such that for every T # o, the transport plan Q7° =
(proj{T’”})#D is the quantile coupling Q(pur, o). We call it the quantile measure of

(/‘LT)TG‘I'

Proof of Propositions 3.18 and 3.20. — The existence parts follows from Definition
3.23 below and are proved just after it; in Proposition 3.18 uniqueness is clear; let
us prove it in Proposition 3.20. It is rather easy to prove that the equality in (11)
for every pair of measures implies the equality in the Fréchet—Hoeffding bound of
general dimension:

(13) Y@y R Fps(onoa) < min (B, ().

where S = {s1,...,54} is any finite subset of R. (Take j such that Fusj(xj) =
miny giga(F,, (zi)). For every k # j, '
Flprojly” ™ P)(a;, 21) = Flus,)(;)

so that finally P¥(]—o0,z]) = F[u,,](x;).) Since equalities (13) for all finite S C R
are a compatible set of conditions, this proves with Proposition 2.12 that there exists
at most one quantile measure P in Marg((i;)reT)- O

Norarion 3.21. — We denote by Q(pts,,---,ps,) and Q((pt)ter) the multidimen-
sional quantile coupling and the quantile measure.

Remark 3.22. — Definition 3.20 uses no order on the set T of indices to define a
quantile measure. So if T = R, the order of the marginals does not matter; bijections
of R act naturally on the quantile measures and their marginals. But because the
Markov property is based on the order on 7 = R, it will be different for our Markov-
quantile measure. Only monotone bijections act naturally, see Example 5.12.

Now here is the definition of the quantile measure through the quantile function.
It ensures the existence of Q(u, ) in Definition 3.18.

DeriNirion 3.23. — Take p € P(R). The quantile function

G, :[0,1] — RU {—00, +o0}
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is the increasing left-continuous function such that (G,)4Alj0,1) = u, i-e., the gener-
alized inverse of the cumulative distribution function F},:

Gu(q) =inf{z e R: F,(z) > q¢}.

The quantile measure Q((pi7)re7) is obtained by pushing forward A|jg,1) on P(R”) by
the map G = (G, )re7 : z € [0,1] = (G, (z))re7 € R7. In other words, the func-
tions G, can be seen as random variables defined on ([0, 1], Aljo,1) and Q((r)re7)
is the law of the process (G, )rey. One can check from this definition the equality
in (11) and (13).

Remark 3.24. — When (g;)rer = (1, v), Law(G,,, Gy) = Q(u,v). Now
/J/jstoy <~ FN>FI/ <~ G;,LgGV7

hence p =gto v if and only if Q(u,v) is an increasing coupling, i.e., concentrated on
{(z,y) e R?: z < y}.

Remark 3.25 (Products of quantile couplings have increasing kernel and map M™
on M™)

We will see in Section 4.1 that Q(u, v) is a composition of two transport plans with
increasing kernel. Therefore by Remark 3.14 it has increasing kernel. Since 'Q(u, v) =
(v, ), Remark 3.16 ensures that Q(v, ) maps M™(u) to M>(v).

All this also ensure both properties for products of quantile couplings.

3.3. DISTANCES p AND p
3.3.1. A distance that metricizes Marg (s, v)

Reminper 3.26. — We remind the reader of the “Portmanteau theorem” (see, e.g.,
[7, Th.2.1]): the weak convergence on some metric space E endowed with its Borel
o-algebra is (equivalently) defined by:

(14) P, — Pif P,(R) — P(R) for all R such that P(OR) = 0.
n—0o0 n o0

In R", it is equivalent to consider in (14) only sets R of the form []}_,]—o0,z;], see
7, Exam. 2.3 p. 18].

Prorosition/Norarion 3.27. Let p be the function defined on P(R%)? by:

p(P,Q) = |[Fp — Fglleo-

(See Definition 3.2 for Fp and Fg.) This is a distance. If pi1, ..., uq are probability
measures on R, it induces the weak topology on Marg((1:)1<i<d). More precisely, for
any P € Marg((u:)1<i<d) and any sequence (Py,)nen of elements of Marg((1i)1<i<d);
the following are equivalent:

i) For all v = ()%, P(@(H?Zl]—oo,mi])) =0 = lim, Fp, () = Fp(x),

ii) For all x = (x;)%,, lim,, Fp, (v) = Fp(x),

ii") For all v = (v;)%,, lim, (Pn (Hl —oo,xij)) = P(Hi]—oo,xij),

iti) (Fp,)nen converges uniformly to Fp.

(
(
(
(
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Proof. — The fact that p is a distance is immediate. To get (iii) = (ii”) use that
J]—o00,2[=U,,]—00,y]. Now it suffices to prove (i) = (ii) = (iii).
(i) = (ii). Take @ € Marg((1;)1<i<a) and b = (b;)_,. For &' = (b))%, > b:
(15)  Fo(t) - Fo(b) = Q(R) = Q(R) < pa(Jbr, bi]) + -+ + pa(Jba, b)),
where R’ = ]—00,b'] and R = |—o0,b], which shows that (Fg)g is “equicontinuous

on the right”. Take € > 0. Since each b; € R can be approached from the right by a
sequence of non-atomic points for yu;, there exists b’ > b such that
pa(Jbr, 1)) + -+ pallba, bal) <& and - (by) + -+ + pa(by) =0,
hence in particular Q(OR') = 0 for every Q € Marg((u;)1<i<a) so that (i) applies
to R’ for P and all the P,. Thus:
|Po(R) = P(R)| < [Pu(R) = Po(R)| + |Pu(R') — P(R)| + | P(R') — P(R)]
< 2+ |Po(R) — P(R)],

and if (i) holds, |P,(R') — P(R')| < € for n great enough, hence (ii) follows.

(ii) = (iii). We apply an adapted version of the prior argument. Suppose (ii) and
take € > 0. For every ¢ there exists a finite sequence

—00 = b (e) < -+ <. 4 (e) = +00

avoiding the big atoms of p;, i.e., so that yu; (]bg), bgj_l[) < e (this is classical and is
proved, e.g., in [7, §12], which deals with the modulus of continuity of cadlag paths).
Every R = ]|—00, b] contains some rectangle R_ and is included in the interior of some
rectangle R, both bounded by consecutive points (b](:))i}h Using again (15) for the
first and last terms:

|Po(R) — P(R)| < |Pu(R) = Po(RD)| + | Po(RS) — P(RO)|+|P(RT) — P(R)),

<de n?:CO by (i) (%) <de
where (%) is uniform as the rectangles R_ are finitely many. We get (iii). O
3.3.2. Another expression _for p; an alternative distance p. — Let 1, ..., uq be proba-

bility measures on R and P, @ stand for elements of Marg((u;)%_,).

Noration 3.28. — When f, g and (f;)%_, are functions, by a slight abuse in this
subsection, f.g denotes the function (z,y) — f(x)g(y) and H;i:l fi the function

(1, wa) =TT, file)

Remark 3.29. — By definition, p(P,Q) = sup| [ ML, fidP — [TIL, f:dQ
each f; ranges over {1j_ 51 : € R}. But in fact:

, Where

Prorosrrron/DEeFiNtTION 3.50

(a) For any P and Q in Marg((u;)L,):

d d
/iljlfidp—/i[[lfidQ

where each f; ranges over {f : R — [0,1] : f is decreasing}.

)

(16) p(P,Q) = sup
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(b) Proposition 3.27 may be stated with a distance p based on x € R™ — P([z, +00])
in place of F[P]. Then p satisfies (16) with increasing functions f;.

Proof. — Once (a) is shown, (b) is clear. To show (a), by Remark 3.29, we have
only to prove >. For f : R — [0,1] a decreasing function and I(t) :== f~*([t, +00]),
fz) = fol 1) (z)dt, thus for (f;)%, such functions:

d
(Hfi)(ml,...,xd):/ ]lR(t)(,’El,...,LL'd>dt,
i=1 te(0,1]7

where R(t) = I(t1) x -+ x I(tq). Therefore:

d d
‘/il_]lfidp—/i]jlfidcz‘z

/ P(R(t)) — Q(R(t)dt
te[0,1]¢

N

[ IP(R@) - Q)
te(0,1]4

< p(PQ). O
Proposition 3.30 has a corollary in the case of transport plans (d = 2).

Prorosition 3.31. — Take p, 4’ in P(R) and P, Q in Marg(u, p'). Then:
p(P,Q) =sup{p(0.P,0.Q):0 € M>(u) and 6 has density bounded by 1},

where the distance p on the right of the equality is that on P(R).
Hence if, for some v € P(R), R € Marg(v, 1) is a transport preserving M™, i.e.,
V€ M>(v), n. R € M>(u), then p(R. P,R.Q) < p(P,Q).

Proof. — For the first equality, as [ f.gdP = ((fun) . P) . g, by Proposition 3.30:
p(P,Q) =supy , [((f11)-P).g—((fn).Q).g| and p(6.P,0.Q) = sup, |(6.P).g—(0.Q).gl.
Now 6 is as in the proposition if and only if § = fu with f : R — [0, 1], decreasing,.
The result follows. Then if R € Marg(v, p) is as claimed,

p(RP,RQ) =sup{p(0.P,0.Q)|0 =0.R,

where § € M™(u) and 6 has density bounded by 1}. This set is included in that of
the proposition, since the action of R on 6§ does not increase the maximum of its
density. 0O

3.4. Proor or Lemma 1.19 anp rREMARKS ABOUT IT. — We prove Lemma 1.19 on the
existence of a process consisting exclusively of increasing paths. Our proof requires
the use of stoinf and stosup introduced in Section 3.1.

Proofof Lemma 1.19. — Let (us)ier be an increasing family of probability measures
for <40 and P be a Markov measure in Marg((u¢)ier) such that for every S =
{51,...,54}, the measure (proj®)4P is concentrated on

{(ml,...,xd)eRd: x1 < - < xq})
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Set ;- = stosup, ., pts and p+ = stoinfyy 115, that are also the left and right limits
of (u¢): for the weak topology, see Remark 3.9. Since (u¢)ier is increasing for <o,
we have ;- =sto 11t Ssto fe+ and ¢ € R is a discontinuity time of (put)¢er for the weak
topology if and only if u;— # p+. Such points are at most countably many. Indeed,
the regions in R? between the graphs of F[u,~] and F[u.+], for the discontinuity
times t, are disjoint and of positive Lebesgue measure, hence are at most countably
many, by o-additivity of the measure.

Let C be a countable dense subset of R containing the discontinuity points. Intro-
duce:

N ={zecR®: 3(s,t) € C% s <t and x(s) > z(t)}.

Being a countable union of P-null sets, N is P-null. Now take (X;)ier with law P,
e.g., take the canonical process  :== R® and X; = proj’ : z € R¥ + z(t). We define
(X;); as null functions on N, and as follows on  ~. N:

—fort € C, )?t(w) = X;(w),

—fort ¢ C, X(w) = limgey, sec Xs(w).
Hence for every w € , the curve t € C — X;(w) is increasing and, even better,
t € R — X;(w) is increasing. We are left to prove that X; = X, almost surely. This
is clear for t € C. For each t e R\ C, {w € Q:3s € C,s < tand Xs(w) > Xi(w)}
is a union of null sets, hence is null, so almost surely, X¢ > sup,; sec Xs = )N(t.
Besides X; — S<t’secysﬁt)~(t almost surely and thus in law, so that Law()}t) = .
Moreover, ¢ is a continuity point of (1), so that Law(X;) = u = Law(X,). Thus,
X, = )~(t almost surely. O

Remark 3.32

(a) If (pe)r is moreover left-continuous for the weak topology, we can adapt the
proof of Lemma 1.19 so that s — )Z'S (w) is increasing and left continuous by using
the formula:

Xi(w) = lim X, (w)ifwe Q< N and X;(w) = 0 otherwise.
s<t,seC

(b) If (u¢)¢ is this time moreover right-continuous, using a symmetric construction
all the curves can be chosen cadlag (right-continuous, with limit on the left at any
point).

(¢) However, for a continuous g = (pt)¢, it is false that some choice of (s,w) —
X, (w) with X, = X, almost surely (fore every s), can make s — X, (w) almost surely
continuous. A simple (counter)example is: ¢ € [0,1] — (1 —t)dp +td1. In this example,
it is even impossible with the looser constraint that X only satisfies )ES = us. With
this looser constraint, it is shown in [8] that an assumption ensuring the continuity of
the curve s — X,(w) (and even the finiteness of its energy), when X is the quantile
or the Markov-quantile process, is that g = (u); has finite energy in the sense of
Section 1.4.

Carrying on with the similarity between =g, and <o established in Theorem C
we mention that Kellerer’s theorem has also been revisited under continuity assump-
tions, see [35, 20, 3]. In particular, it has been proved that if (s )¢er is right-continuous
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the associated martingale can be defined in the space of cadlag paths. Moreover,
Lowther proved [34, Th.1.5] that there exists a unique function that associates a
strongly Markovian martingale with every continuous increasing in convex order
t € R — pu; provided this function is moreover continuous for the pointwise con-
vergence.

3.5. SOME REMARKS FOLLOWING FROM Prorosition 3.27; proors or Lewmmas 2.23,
AND 2.24

3.5.1. The remarks on Proposition 3.27; proof of Lemma 2.24

Remark 3.33 ({P € Marg(u,v) : P maps M™(u) to M>(v)} is closed for the weak

topology)

Any 6 € M™(p) is an increasing limit of positive combinations of characteristic
functions 1)_ 4, so P € Marg(u,v) maps M™(u) in M™>(v) if and only if it maps
{1]j—00,z): € R} in it. Now take a sequence (P,), € Marg(u, )" of transport plans
having this property and converging weakly to P € Marg(u, v). After Proposition 3.27,
|E[Pn] — F[P]lloc — 0; in particular, for any = € R, ||F[P,](z, - ) — F[P](z, - )|lec — 0,
ie, |Flul)—oo,] - Pn] = Flptlj=s0,a] - Pllloc = 0, i€, pt|j—cc,q] - Pn converges weakly to
pl)—co,a] - P- By Remark 3.15, p1]j_o 2] - P € M™(v), we are done.

Now the little Lemma 2.24, which we use several times, is immediate.
Proofof Lemma 2.24. — Apply Remarks 3.33 and 3.16. O

Remark 3.34. Take (H;)L, increasing real functions, and H = H; ® --- ® Hy :
RY — R Then Hy : Marg((u;)% ;) — Marg((Hi(pi))% ;) is contracting for p.
To check it, think that (F[HxP|—F[HxQ|)(x1,...,2zq) = (HxP—H4xQ)(I[,]—00, x:])
equals a term of the type (HxP — H4xQ)([[;]—00,¥:]), and use Proposition 3.27.
Thus if (P,), converges to P in Marg(u1, ..., ta), (HxPy)n converges to Hy P in
Marg(H1(p1), - -, Ha(pa))-

The next remark is neither related to Proposition 3.27 nor to Lemma 2.24 but is
an analogue of Remark 3.34 with <y, in place of p.

Remark 3.35. — If P,Q are in P(R?), the (H;)%; are increasing functions, and H =
Hy ®---® Hy then Hy : P(RY) — P(RY) is increasing for <o, i.e., P <o Q =
HyP =1, HxQ. To check it, think that

(F[HyP| = F[H4xQ)(z1, ..., w4) = (Hy P — HyQ)([[;]—o00, z4])
equals a term of the type (HxP — HxQ)(I];]—0o0,y:]), and, for the indices i such
that “[” stands for “[”, use that |—oo, ;[ = ,,]—00, z; — 1/n].
Remark 3.36. — Notice then that p(T,7") = p(*T,*T") (see Definition 2.7 for *T).
Thus, in Proposition 3.31, if R € Marg(y/,v) and if R has increasing kernel (i.e., by
Remark 3.16, 'R maps M™(v) into M™(u)):

p(PR,QR) = p("(PR),"(QR)) = p(R'P),'R'Q)) < p(P,"Q) = p(P, Q).
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3.5.2. Proof of Lemma 2.23. First we prove Lemma 3.37, then its consequence
Proposition 3.38, and finally Lemma 2.23.

Levma 3.37. — For everyn € N, let P, € Marg(u, v) have increasing kernel. Suppose
moreover that (Pp)nen converges to Py. Let h : [0,1] — [0, 1] be an increasing function
and for everyn € N, h,, = P,, . h. Then (hy)nen converges to hg, p-almost surely.

Proof. — By the equivalence proved in Proposition 3.11, the sequence (En)neN is
increasing. By Propositions 3.30(b) and 3.27, p(P,, Py) — n—0, i.e., for every in-
creasing g with values in [0,1], [ g(y)h(2)dP,(y,z) = [ g(y)h(2)dPy(y, z). Hence:

(17) / 9 () dpr(z) — | g(a)Fo(e) dpu(z),

by definition of En This also holds if g is the difference of two increasing functions,
in particular g = 1j4 5] = L{a, yoo — L[p,400[-

Let A be the set of the elements « of [0, 1] such that u[z, 1]u[0, 2] > 0 and for every
n € N, p-esssupyg 4 hy = p-essinf [z, 1]hn = hy, (). In case p = A, since hy, is increasing,
hence has at most a countable number of discontinuity points, p(A) is 1. This also
holds in the general case and is given by the increasing functions lNzn o Gy, we leave
the details to the reader. Now we take any z € A and prove hy(z) — ho(z). It is
enough to prove limsup,, hn(2) < ho(z), since liminf, h,(z) < ho(z) can be proved
symmetrically. Suppose, for contradiction:

limsup Ay (z) = ho(z) 4 ¢, for some & > 0.

As ho is increasing and Eo(x) = p-essinf [a:71]%0 there exists y > x such that u[z,y] >0

and: _ 1 _ ~
ho(z) < 7/ hodp < ho(z) +¢€/2.
1z, Yyl Jiay)
This contradicts the facts that ﬁ f[ By dp — n—00 7T g] f[x J ho du, obtained
with g = 1, 4 in (17), and that h,, is increaslng. O

Prorosition 3.38. — Let P, tend to Py in Marg(u1, ..., uq,n) and P}, tend to P§ in
Marg(n, v). Assume moreover that P!, has increasing kernel for every n. Then Pl o P,
tends to Pjo Py.

Proof. — By Propositions 3.30(b) and 3.27, we must show that

/f JA(Py o PL) (2,3, 2) — /f Vh(2)A(Py o P, 2),

where f((z;)%_;) =TI, fi(x:) and g, h and the f; are any increasing functions from R
to [0, 1]. For all n > 0:

[ 1@ 0 P2 = [ F@gtw) [ ke (00207 o)

- / £(2)(ghn) (v)dP

where 71n = P, . h, by Definition 2.8 and Section 2.1.3.

JIEP. — M., 2022, tome g



34 C. Bouser &« N. JurLLer

By Lemma 3.37, (g%n)n pointwise converges to g%o, almost surely. Hence by the
dominated convergence theorem:

‘ [ r@ahwars - [ rwhowar,

— 0.

Moreover, p(P,, Py) tends to zero and for every n, gﬁn is an increasing functions
taking values in [0, 1]. Hence, again by Propositions 3.30(b) and 3.27:

— 0.

(19 [ 1@a)war, - [ ) war,

Therefore with the triangle inequality, (18) holds with 7L0 in place of 7Ln on the right,
which is exactly what we claimed. |

Remark 3.39 (Counterexamples to Proposition 3.38)

(a) Case where the marginals are not fixed. Take d =1, p = v = 1(0_1 + 61) and
n = %(6,1/n + 01/,) and its limit dp in the parameter n. We consider the quantile
couplings P, = %(6,17,1/71—#51)1/”) € Marg(po, 1) and P, = 'P,, € Marg(u,n). They
have increasing kernel but not fixed marginals. On the one hand,

1 1
P,o P = 5(571,71/n,71 +01,1/m,1) s 5(571,0,71 +01,0,1)-

On the other hand,
. . 1
(Um (P, )n) o (M (P, )n) = 7(01,01 + 01,01+ 01,01 +-1,0,-1)-

(b) Case where the transitions are not increasing. See the example in [28] after the
proof of Satz 14. Here the marginals are fixed but the transport plans neither have
Lipschitz nor increasing kernel.

We can now prove Lemma 2.23. It follows directly from Proposition 3.38.

Proofof Lemma 2.23. — Consider a sequence Pl'y 0 ---0 Py, with limit P €
Marg (g1, - - -, tg+1) and denote proj:‘;;z+1 P by P, ;1. Since (proj~'*!
P; ;41 is the limit of (PZ-’}Z-Jrl)n7 hence Pj;y1 € J;;41. Proposition 3.38 used by

induction shows that P = Py s0---0 P, py1. O

)4 is continuous,

4. CONSTRUCTION AND CHARACTERIZATION OF THE MARKOV-QUANTILE PROCESS

Now (pt)ter s a family of probability measures on R, Fy denotes the cumulative
distribution function F),, of p; and Gy its quantile function, see Section 3.2. In this
section we build the Markov-quantile measure 9 and prove Theorems A and B.
Our proof of Theorems A-B is based on transport plans L, € Marg(), A), defined
in Section 4.1, that are the 2-marginals of an important auxiliary process law called
the quantile level measure Lev € Marg(A:):er, where each ); is a copy indexed by ¢ of
A = Ajp,1)- Here is the link between Lev and MMQ: G maps ([0, 1], A¢) to (RU{£o0}, p1);
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set G = ®1erGy, so that Gy maps Marg((A)ier) to Marg((us)rer). Then, as proved
in the proof Theorem 4.21 p. 52:

(19) GyLev = MA.

Remark 4.1. — Readers familiar with Mathematical Statistics may compare L,
with the notion of copula and (19) with Sklar’s theorem. In particular, the (bivariate)
cumulative distribution function of Lev®! = L, 4 is a copula associated with MO
It is defined as the pointwise maximum of the family of copulas made of the cumulative
distribution functions associated with (L(sjnr)rcr, Where R ranges over finite sets,
see Definitions 3.4 and 3.5, Lemma 3.8, Proposition 3.27 and Notation 4.10. Although
the link is immediate we will not use further the terminology of Copula Theory.

This section is divided in three. In Section 4.1 we define the coupling Ly for all
R C R, using the key monotonicity Lemma 4.9. In Section 4.2 we define 99 and
prove Theorem A, purely via the 2-marginals (MQ*")sc; == ((Gs ® Gy) g Lysa))s<t =
((Gs @ Gt)#Lis,4)s<t, i-e., without introducing Lev. Finally in Section 4.3 we prove
Theorem B, i.e., a refinement of (19) and the approximation of Lev and 9Q by
sequences (Levg,)n and (Qig,)n, respectively.

4.1. TRANSITIONS KERNELS TO AND FROM THE SPACE OF QUANTILES [0, 1]. — In this paper
we will need to consider the quantile couplings of the measures u; with the reference
measure A\ = A|[g 1]

Norarion 4.2 (¢, kr, *k,.). — For all r € R we set ¢ = Q(\, p1r-); thus g, (see Defi-
nition 2.7) is Q(u,, A). Those couplings admit the respective disintegration kernels:

0 if ur(x) =0
b s (0, B) — 06, (o(B), iz, ) = { ne o
(e ()T A B (@) B (@] 1 (@) > 0.
Remark 4.3
(a) Notice that qs . ¢ = Joint(us, ks . k) = Q') where Q%" = Q(us, pe), see
Definition 3.20. Indeed, *qs . ¢ = *qs . Idx 2 . g¢, then apply (b) below, which will also
be useful farther.
(b) If some ordered pair (U, V) of variables has law T' € Marg(A, A), then

Marg(pis, 1) 3 *qs - T . g = Law(Gs(U), G¢(V)) = (G5 @ Gy)4T.
Indeed, *q,.T.q; = proji‘;f(tqS oT oq) and the 4-times process (G, (U),U,V,G,,(V))
has law g o T o ¢; and is Markov, since the o-fields spanned by U and {U,G,,.(U)}
are the same.
(c) From (a) we get ‘q, . ¢» = Id,, o, so that ‘¢, . ¢, . *¢, = *¢, and ¢, . ¢, . ¢» = ¢,
However, ¢, .'q, # Idy 2. Indeed, k, . 'k, maps any quantile level a € ]0, 1] on itself
except when G.(«) is an atom of p,.. Actually, u,-almost surely:

b o () = O if 4 (Gr(a)) =0
(0 —a7) M Njg- o+ ifa€la, ot

where Ja™, at[ denotes any set A, , as follows.
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Frcure 2. Composition of kernels £,

Norarion 4.4 (Atomic levels, ¢,.)
(a) We denote by A, , the interval |F,.(z~), F,-(x)[ of quantile levels merged by G,
on some atom x of u,, and by A, the set UH7.($)>O A, C[0,1] of “atomic levels” of y,..
(b) We denote k, . 'k, described in Remark 4.3(c) by ¢,..

Remark 4.5. — Measures § < A are transported by £, as follows: 6 . £, coincides
with 6 on ]0,1[ \ A,, and on each A, . it has constant density and mass 0(4, ,),
i.e., equals (o™ —a™)710(A, ). Equivalently, F[f.¢,] is continuous, equal to F[f] on
10,1[\ A, ;, and affine on each connected component A, , of A,.

The product Q%7 . Q™2 ... Qrm-1"m Qrm:t appearing in Theorem A is more
deeply analyzed in Theorem B. Its kernel reads:
(ks kry) - (kpy kpy) oo (g k) - (B, Ke)
(20) ="k . (kry . hry) oo (K ) e
=%y My, o by Ky

In Remark 4.17, (20) is further commented and re-expressed for transports in place
of kernels. For now, it leads to introduce the following kernel.

Norarion 4.6. — Take R = {r1,...,7m} CR. We denote the kernel £, . £, .-+ . £,

from ]0, 1] to itself by £g, and Joint(A;£g) € Marg(A\ \) by Lg. If R = @, {y is the
identity kernel and Lg the identity transport.

Notice that £{,; = ¢, and that for any R, A. /g = A. Moreover, {g only depends
on (A;)rer. The following lemma is particularly simple.

Levva 4.7. — Let R C R be a finite set and u, v be in M(X).

(a) If p Ssto v then . L =Zsto V. LR, i.e., Joint(X\; €r) has increasing kernel.
(b) If u is in NMO>(N), then so is p.Lr, and p Sgo it - LR-

Proof. — Forr € R, one easily checks that ¢, is increasing and stabilizes M™; (a) and
the first point of (b) follow. If p € M™(X), to see that p =g p . £r, look at the
cumulative distribution functions. They coincide off the components of A,. Now on
each of those, F), ¢ is affine whereas F}, is concave since p has decreasing density, so
necessarily F, > F, 4. O
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We add a remark, linked with Figures 2—4, on the principle of Theorem A’s proof.
A reader only looking for the formal proof itself may skip it.

Remark 4.8. — We will not (directly) obtain the couplings MO*" as a limit of prod-
ucts Qfg ik for some finite sets R, with dense union, as suggested in Section 1.5

p.11—to show this does not work. We aim at obtaining IMO*’ as a supremum,
of the set {D‘[SI% : R finite and R CJs,t[} (see Theorem A(iv) for the notation), and
actually we do it on the space of quantile levels, i.e., we look for a supremum of
{fr : R finite and R C]ls, t[}. The question is to find the adequate quantity, or order
relation, for which a supremum (and hopefully then a maximum) shall be sought.

First, Figure 2 makes us observe how kernels of the type /g act on measures of
P(]0, 1]). It displays the action of £ with R = {ry, r2, 73,74} on some Dirac measure §.
The vertical segment on the left is the space ]0, 1[ of quantile levels. We suppose that
each p,, has a single atom and draw vertically, at abscissa r;, the interval A,, (see
Notation 4.4(a)). The drawing is in the case where § = J, with x € A,,. Then, see
Remark 4.5: £, , maps § on the uniform probability measure on A, ; in turn, £y,
etc. The first
drawing shows a “possible trajectory of an element of mass at «” transported by the
discrete Markov chain with transition kernels (¢,,)%_ ;. Since we take z € A, , it is
displaced by ¢, to a’, picked uniformly at random in A,,. In case 2’ € A,,, as in the
figure, it is unchanged by /,.,; then in case 2’ € A,, (figure), it is displaced by ¢,
to a random z'" € A,,, and finally, in case " € A,,, displaced by ¢, to a random
a2 € A,,. The second drawing shows the successive measures d,, 0y . £y, Oy . by . Ly,
etc., the level of grey being proportional to the value of their density.

So each ¢,, “spreads” a little more the mass of 6.4, .- - -.£,.. _,, replacing it by its mean
(measure of constant density) on each connected component of A, . If § < A, this

leaves the latter unchanged outside of A,, and makes it uniform on A,,,

averaging process lowers the total variation of the density at each step: at most, you
get the measure with constant density one, i.e., A itself, on which all the transports {r
act trivially. Thus a natural idea is to consider that, if R’ C R are finite and 6 < A,
the density of 6. £r will be closer to 1o [, for some adequate distance, than that of
0. ER/.

Unfortunately, this is the case if R’ = R N]—o0,t] for some ¢t but not in general.
Figure 3 shows, from top to bottom, the Dirac measure §, and the graph of the
densities of:

— Oy My y O Ay Ay Oy Ay Ay Ly and Oy Uy Ay ey . €, (0n the left),
=0z My, 0p Ay, Ay, and Oy by Ly, Ly, (o the right),

in the case v = 2, A4,, = ]%,3[, 4,, = 12,1, 4, = ]%,3[, A, = ]0,2[. Then
0 gy ryray = A, 1€, has exactly density 1)g 1, whereas 6. ¢r # A.

A remedy is to look the kernels £ act on measures of density %Il]oyx[. For the
latter, and more generally any element of P™(]0, 1[), which is stable by the action of
the couplings ¢, the idea above works, with the stochastic order. This is provided by

Lemmas 4.9 and 4.10 below; see also Remark 4.13. Figure 4 gives the example of the

[ V)
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-

[

0 1 0 1

Ficure 3. Composition of kernels ¢, acting on some Dirac mea-
sure d,. On each column, the horizontal interval is the space |0, 1]
of quantile levels. From top to bottom, the horizontal bars represent
successive atomic intervals A,, and, below each one, the density of ,
transported by the composition of the successive corresponding ker-
nels 4., ..., ¢-,. On the right, A,. is omitted.

kernels ¢,, of Figure 3 acting on the measure v of density %]l]o,x[ with 2 = 2/3: one
gets v . by, Apy Apy Ay Zsto Vo Apy Ay, Uy,

Though simple, the next lemma is a key of our construction of 9.

Lemma 4.9. — Let R C R’ be two finite subsets of R and € M™>(X). Then p.fr <o
. 63/.

Proof. Using an induction on the cardinal difference, it is enough to prove this
if R’ has one more element than R, say r’. We order it with the elements r; of R:
ry < oo < rp <1 <rppp < o0 < Ty By Lemma 4.7(b), if pois in M™>()), so is
pr = Ay oo by and pg Sgto pi - €. We apply £y, oo+ £ to each term of
this inequality. Lemma 4.7(a) concludes. O

The choice of the suitable set M™ in our monotonicity Lemma 4.9 (see also Re-
mark 4.8) enables us to extend the definition of Lg to infinite sets R. Recall that =<,
is interpreted in terms of <, in Remark 3.19.
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HH

0 10 1

Ficure 4. The kernels ¢,. of Figure 3, acting on the measure of density
%]l]o,z[. The global setup of this figure is the same as that of Figure 3.

Lemva/Norarion 4.10

(a) For all finite subsets R, R’ of R, Lgr <16 A® A, and R C R = Lp' <)o Lg.

(b) For any R C R, losup{Lr' : R C R and R’ finite} exists. We denote it by Lr
(which is consistent with Notation 4.6 when R is finite).

(c) For any R C R, there is a nested sequence (Ry,),, of finite subsets of R such that
(LR, )n converges weakly to Lg; if (Ry,), satisfies this property, all sequence (R.),
such that R), D R, also does.

Proof. — Let us prove (a). For all (x,y) € [0,1]?, F[Lg](z,y) = (Aljo,2)) - Lr([0,¥]).
After Lemma 4.7(b), (Alj0,¢]) - Lr € M™s0 f 1y i(()\uoﬁ]) .Lr)([0,y]) is decreas-
ing, thus f(y) > f(1) = . Hence:

Vye[0,1], ((Ao,a) - Lr)([0,y]) = 2y = FIA@ N(z,y), ie, Lr <1 A® A

Now if R C R for every x we can apply Lemma 4.9 to A|jg € M™. This yields
FILr)(5,9) = Mloa)) - La(10,8) > (Mo) - Lo (0,5]) = FILr)(z,y), which is the
expected relation for <. Then, (b) and (c) follow from criterion (b) of Lemma 3.8.
Indeed, by (a), 8 = {Lr : R’ C R and R’ finite} is bounded from above by A ® A,
and if {Lp;,Lgr,} C 8, then Lriup, € 8 and Lriugr, =10 Lg, for i = 1,2. Finally,
the assertion about (R.,), follows from (a) and the interpretation of both p and =g,
with cumulative distribution functions. O
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Norarion 4.11. For all R C R, we denote by ¢ the kernel associated with Lg.
This is again consistent with Notation 4.4(b) when R is finite.

REmaRrk 4.12. For every a € ]0,1[, due to the definition of <,

Ajo,a] - LR = StOSUDTC R T finite AL[0,a] - €T
Indeed, Lemma 4.10(c) actually proves that there exists a nested sequence (R,),
of finite subsets of R such that F[Lg, | pointwise converges to F[Lg]. Therefore
F[Ajo,a] - r,](-) = F[Ry](,-) pointwise converges to F[A|[o,q) - £r]. Moreover,
F[Ao,a] - €r] = F[A|[0,q] - £r] for every finite T'C R. These two facts give the remark.

Remark 4.13 (complement to Remark 4.8). Lemma 4.10 means that, for R C R
and all interval Ja, b C 10, 1], ()\ Uavb[) . L is not obtained as a supremum, but as the
difference of two:

(Mpo,a1) - Lr = stosup{(A|[0,a)) - Lr' : R C R and R’ finite}
— stosup{(Aljo,a)) - Lrr : R C R and R’ finite}.

The following result is crucial to define processes on (]0, 1], A) with Corollary 2.13,
as is done in particular in Definition 4.19 for Levg and Lev.

Prorosition 4.14. — If R and R’ are subsets of R such that r < v’ for all (r,1') €
R x R, then : Lror: = Lr . Lp. In particular, for s <t <wu, Lisy) = Lis,y - Ligyu)-

Proof. — Using Lemma 4.10(b) and (c) we find sequences (Ry,),, and (R),), of finite
subsets of R and R’ respectively, such that Lg, converges weakly to Lg, Lr: to Lg/,
and Lg,ur; to Lrur. Besides, since r» < 1’ for all (r,7') € R x R/, since the R,
are finite and since L,y is idempotent (so that in case RN R’ # @ and R, N R}, =
RN R = {r}, a repetition of Ly, does not matter), Lr,ur; = Lgr, . Lr;. Then,
using Proposition 3.27 and the distance p introduced in it:

p(Lr . Lp,Lror') < p(Lr . Lr/, LR . L)
+p(Lr-Lr,,LgR, -Lr )+ p(Lr,ur:,, LrOR)
< p(Lr, Lry)+ p(Lr,Lr,) + p(Lr,ur:,, LrRUR')

by Proposition 3.31 and Remark 3.36, since ‘L, also preserves M™(X). All terms
tend to zero when n tends to infinity. The desired equality follows. O

4.2, Tue MARKOV-QUANTILE PROCESS INML); PROOF OF THEOREM A

Reminber 4.15. For (s,t) € R? with t > s, and R = {r1,...,rm} C [s,], Q[Sg]
denotes the coupling Q(fts, fry ) Q(fry, firg)- -+ (e, pt) € Marg(ps, p¢), see The-

orem A(iv).
Prorosrrion/DeriNirion 4.16

(a) The set {Q[Sj;] |R C R and §R < oo} has a lower orthant supremum and there
is a nested sequence (Rp)nen of finite sets such that Df}’ztn] tends to it. We denote it
by fis,t-
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(b) The family (fs,t)s<t is consistent in the sense of Definition 2.14, giving rise to
a Markov measure MO € Marg((ue)ier), that we call the Markov-quantile measure
attached to (fit)ier.

(c) Forall s and t > s, MA™" = (G5 ® Gy) 4 Lys 4 = (Gs @ Gy) 4 Lis -
To show Proposition 4.16 we first state the following crucial relation between QFI’% €

Marg(us, pt¢) and Lr € Marg(A, \) defined in Section 4.1.

Remark 4.17. — Take any finite subset R of R and (s,t) with s < ¢, then:
Q[Sjgt] = (Gs @ Gt)pLisyinr = (Gs @ Gi) g Lis nr-

Indeed, Q%' ="'q;.q: =Law(Gs, G¢), see Remark 4.3(a). It also equals (G5 ®@Gy) 4 (Id2),
where Idy = Id) 2 is the identity transport form A to itself, see Notation 2.6, since by
Remark 4.3(b), Q(us, ptt) = *qs - ¢ = '¢s.Id2 . ¢t = (G5 ® Gy)x(Id3). More generally,
for any {r1,...,rm} C|s,t[:
Q(ﬂm /L?”l) ST Q(,U'Tmaﬂt)
= th - qry - tqu cGry - tQTm,l -qr,, - tqhn - qt
= (G5 ® Gt)#(qr, - tqﬁ cGry - tq"'nl—l ~rp, - thm)
(notice that this writing involves neither ‘g, nor ¢;)

= (GS ® Gt)#L{'rl ..... T }*

Besides recall that ¢, . °qs . ¢s = ¢s and ‘q; . g; . 'q; = ®qq, so that:

Q(Nmﬂm) A 'D(Nrm7ﬂt) =(Gs® Gt)#(qs 'tqs ~Qry - -t(Irm N ~tQt)
= (Gs & Gt)#L{s,rl,“.,rm,t}'
Proof'of Proposition 4.16. — We have only to gather our results. We set
8§ ={R C]s,t[: R is finite}.
By Remark 3.35 and Lemma 4.10(a),
VRES, (Gs®Gy)gLr =10 (Gs®@Gr)p(A®N),
and RCR = (Gs & Gt)#LR’ =<lo (Gs X Gt)#LR~

Thus, by Lemma 3.8(b), losupp/cs(Gs @ G¢)xLp exists and is the limit of some
sequence ((Gs ® Gt)# LR, )n. Hence the limit in (a) is given by Remark 4.17:

05T QLT L QT me) -1 m(n) | Qrm(n))t — (Gs ® Gt)#LRn~

We prove now the first part of (c), i.e., st = (G5 ® G¢)g L4 and, at the same
time, that the sequence (R, ), in (a) can be chosen to be nested. Let (R,,),, be a nested
sequence of 8§ such that Lr, — Lijsy[, i.e., F[Lg,] pointwise converges to F[Lis .
If M € Marg(us, put) satisfies (Gs ® Gy)gLr <10 M for every T € 8, this also holds
for R = R, for all n. Now by Remark 3.34, (Gs ® G¢)gLgr, — (Gs ® G)#Ljs .
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Therefore, going to the limits at the level of the cumulative distribution functions
we get (Gs ® Gt)g Ly =10 M. Then Remark 3.35 gives
(Gs ® Gt)#LR’ jlo (Gs ® Gt)#L]s,t[7

hence:

(Gs ® Gt)#L]s,t[ = losupR’CR and R’ ﬁnite{gfg/] = (GS ® Gt)#LR/}’

Corollary 2.13 gives (b). Indeed, Proposition 4.14 on the composition of trans-
ports Lr gives the consistency of (ps)s+ (see Definition 2.14):

(Gs @ G Lysay ="as - Lisa- ¢ and  (Gy ® Gu)wLiuf = ‘@ Lyt u[qu-

Since qt - tqt = L{t}7 MHsu = Hs,t - Ut -
For the second equality of (c), proceed as at the end of Remark 4.17. O

We now prove Theorem A.

Proof of Theorem A

(a) Recall that 99 is Markov and defined in Definition 4.16. By construction,
MO € Marg((1t)ter) and satisfies (iv). Then IO satisfies (ii), i.e., has increasing
kernel as quantile couplings have, see Remark 3.25, and since this property is stable
by composition and weak limit, see Remarks 3.14 and Lemma 2.24. The last claim
of (iii) reads:
Law(X;| Xs < z) = stoinf{Law(Y;| Vs < z) : Law(Y) € Marg(u) satisfies (i) and (ii)},
where (X;)ier has law Q. An alternative writing is that for all P = Law(Y) as

above and all s < t, FMQ*"] > F[P*!], i.e., MQ™" =), P>!. To show it, it is
sufficient to show that for any strictly increasing m-tuple (r;)™,:

(21) QT177'2 e .QTmfl,Tm jlo Prlfrvn‘
Indeed MO*" = losup{Q "2 . ... . Q"m-1"m . s =7 < - < 1, = t}, by definition
of P in Proposition 4.16. We write (21) in the following equivalent form, in which we
7; stands for r,41_;:
(Hn) QT T S T

denoted by C' below

For A, B € Marg(u,v), from the definitions, A <, B is equivalent to

Ve, NL]—oo,w]'A Ssto /’LL]—OO7I]'B'

Notice also that *Q, 7, = Qr, 7,. We prove (H,,) by induction on m. (Hy) is true by
definition of . Suppose (H,,). Take z € R. Then (see the justifications below):

iy [mooa] - Q7T QT = i () 0. C L QT
(22) st 117 ||—sona] - PTTE QT T
(23) Ssto U7y []—o0,a] - tprm.T1 t Prm+1,Tm
(24) =sto U1 []—o0,a] - tPTmALT
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Above, (22) holds since iz, ||—oo,] - C Zsto 17 []—00,a) - “PT™™ by (Hy,) and since
Q7. 741 has increasing kernel, i.e., respects =o. For (23), since P™"™ has increasing
kernel, *P™"m maps M™(pir,, ) on M™(pr, ) by Remark 3.16, 50 fir, [|— o0 4] - 'P™™ 7" €
M™(p7,, ), hence it is an increasing limit of positive combinations of measures of the
type fi7,, [j—oo,y)- Then, for these measures, iz, [|—ooy - Q7™ ™ Zsto fir,, []—co,y] -
tprm+1.Tm by definition of Q. Finally (Y;); is Markov, which gives (24), i.e., (Hy,41)-
We are done.

(b) By Remark 3.24, (u4)ter is increasing for =, if and only if every Q% is an
increasing coupling, i.e., concentrated on {(z,y) : # < y}. This implies the same for
their products and the limits of those, so for 9Q. Then apply Lemma 1.19. |

4.3. Proor or Tueorem B: convercence or Qg1 o MQ. — For all finite subset R
of R, P € Marg((pt)ter) and (s,t) with s < ¢t we introduced the couplings P[Slﬁ €
Marg(ps, pt¢) in Theorem 2.26—and actually in Theorem A(iv) in the case P = Q.
We used them in Section 4.2. Now we introduce the measure Pir) € Marg((u):) that
was announced in Section 1.5 in Notation 1.10. The notation is consistent, i.e., for all
s <, proj;t PRy is the previously defined P[Sbﬁ. Then we prove Theorem B, which
means than we implement the tentative program introduced p. 11 sq. in Section 1.5,

in a way that avoids the problems explained there.

Dermvimion 4.18. — If M € Marg((ut)¢) and if R = {r1,...,7n} C R, we denote by
Mgy € Marg((pt)er) the measure M made Markov at the points of R defined by the
data of its finite marginals (projS )# Mgy, for all finite S containing R, as follows:

m

0 0 1 1 m
(pI‘OjS)#M[R] — MU Sngo Tl o NS 08002 o Lo NfTmST ,...,snm,

where S = {s),... ,sgo,rl,s%, e ,S}Ll,rg, oy Ty ST st} and where the first or
last term disappears if ng or n,, is null, respectively. These marginals are consistent in
the sense of Definition 2.14. So by Proposition 2.12 this defines M. We also commit
an abuse of language: Mg is rather the “law of a process X of law M, made Markov

at the points of R”.

By Proposition 4.14, for any R C R, (Lgns)s<¢ € Marg(A, A) is also a consistent
family, thus again Proposition 2.12 enables us to define the following processes on the
set of quantile levels.

Derinirion 4.19. — For all R C R we denote by Levg € Marg((At)ier) (A+ denotes A
at each t) the Markov process with 2-marginals Levi{:t = Lpns,¢- We call Levg the
level process attached to (pt)ter and denote it by Lev.

Remark 4.20. In this subsection, using Definition 4.18 with M = Q we obtain mea-
sures Q[g) linked with Levr as follows. After Remark 4.17, Q[SI’;] = (Gs®@Gt)¢Lisnrs
thus, with G = (®.erGt), the measures GxLev g and Qg have the same 2-marginals.
They are actually equal, as we prove in the “claim” at the beginning of the proof of

Theorem 4.21(b).
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The goal of the remaining part of this section is to prove the following statement
that is a more precise and technical version of Theorem B. After some preparation its
part (a) is proved on p.47. Its parts (b) and (c¢) are proved on p. 50 after some more
auxiliary results. In the statement below, see Notation 4.10(b) for L., Definition 1.22
for “atomic times” and Definition 4.25 for “essential atomic” intervals or times.

Turorem 4.21. Let (ut)ier be a family of probability measures on R. In points (b)
and (c), (Ry)n stands for a nested sequence of finite subsets of R and R for |J,, Ry.

(a) There is a countable set R C R satisfying:
(25) for all (s,t) with s <t, Lrjss| = Ljs-

(b) If R satisfies (25) then (see Reminder 1.11 for the weak convergence):
(26) (Q[Rr,))n converges weakly to M.

(¢) Conversely, if (R,)y satisfies (26), then:

(i) For any nested finite sets (R;,)n such that R = |, R}, (Qr,))n —
n—oo M. In other words, (26) is a property of R. Moreover, (26) is also satisfied
by any countable R D R.

(ii) Let E C R be the set of non-atomic times of R, then R\ E satisfies (26).
Moreover, for any finite set E' of non-essential atomic times, there is a set R’
satisfying (26) and such that R’ NE' = &.

(iii) The set R meets each essential atomic interval of (u:):, hence in par-
ticular, it contains all its essential atomic times (which are at most countably
many, by Proposition 4.26).

Remark 4.22

(a) We see no simple condition on R that, added to Condition (c)(iii) above, is
necessary and sufficient to ensure Qr,| — 9Q in Theorem 4.21. For example, density
in the set of the atomic times is neither necessary, see Example 4.29, nor sufficient:
take, e.g., puy = )\L[(),l/g]-’—%(sl ift € Qand pu; = %50 + Alj1/2,1) otherwise, then there
is no essential atomic interval, all time is atomic, and R suits if and only if RN Q
is dense in Q and RN (R \ Q) is dense in R \ Q, so that any set dense in R is not
suitable. Even the condition “R is the projection on R of a set dense in the set of
atomic levels A = (J,ep ({t} x A¢) C R x [0,1]” (see Notation 4.4) is not sufficient.
Take p1;, = £60 + 301 if t € Q, otherwise y; = &, then E = (Q N ([0,1] ~ {1/2})) x Q
is dense in A but R = projg(E) does not suit.

(b) In point (c)(ii) of Theorem 4.21, any non-essential atomic time ¢ may be avoided
by a set R satisfying (26), but it is not true that if R satisfies (26), any such ¢ € R may
be removed from R without making (26) false: see Example 4.29 where R consists of
a single non-essential atomic time.

(¢) Condition (25) implies (26), but notice that it is not necessary. Take, e.g.,
pt = Aljo,1) for t < 0 and py = do otherwise. Then R satisfies (25) if and only if
RNRY # @, but Q is Markov, so that (26) is true with R = @.
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Lemma 4.23. Let T denote a totally ordered set of indices (in practice, T =RT or
T =N). If (R;)reT is a family of subsets of R, increasing for the inclusion, setting
R = UT R;, (Lg,)reT is increasing for <1, and tends weakly to Ly when 7 tends to
infinity.

Proof. — Tt rests on this remark: by definition of <), in Definition 3.4 and of p in
Proposition 3.27, if A, A’, A” are measures of P(R?) with the same marginals and
A <)o A" =)o A", then p(A’, A”) < p(A, A”). Now we prove the lemma. By definition
of Lr, in Lemma 4.10(b) the sequence (Lg_)rec7 is increasing, be the sets R, finite
or not. By Lemma 4.10(c), and as p metrizes the weak topology (Proposition 3.27),
for all € > 0 we find a finite R’ C R such that p(Lg, Lr') < e. As R =, R, there
is a 7y such that RTo D R'. Then: 7 > 79 = Lr =<1 LRT =10 Lr = p(LRHLR,—) <e¢
by the remark. O

Lemmya 4.24. — There is a nested sequence (Rp)nen of finite subsets of R such that
s<t= LRnﬁ]s,t[ — L]s,t[

Proof. — Let ((ug,u)))ken be a dense sequence in

{(z,9) eR?: z <y}

and for all n > 1, (R})ken a nested sequence of finite subsets of R such that
P(LRoAugul [s Lyug ) < 1/n for every k € N. Denote Ur_, R} by R,. Then for
any s and t > s, Lg st[ = n—oolqs,[- Let us prove it. Fix ¢ > 0. By Lemma 4.23
(use a subsequence (ky), such that (Juy,,uj [)» is an exhaustion of |s,[), there ex-
ists k such that p(L]s,t[vL]uk,u;[) < 6/2. Then L]uk,uk[ﬂRn =10 L' =46 L]&t[, where L'
stands for Ljs 4R, OF Ljy, [ for any k. For n > max{k,2/ec}:

P(Ls il D 10Rn) < Pty Ly ) + P(Ljase 1> Ly, (0B, ) < €

Therefore with L' = Lj, 4jnr, we obtain the desired convergence to Lj, . O
Derinirion 4.25. — Let I be an interval. If, for some interval J D I such that J~\ T is
disconnected (then for all such smaller J'), L; # Ly, we call I an essential atomic

interval of (ut)ter. If I = {t} is essential, we call t an essential atomic time of (ut)ter.

To check the parenthesis in the definition, suppose that Ly = Ly ; and get
Lj = Ly ; by Proposition 4.14.

Prorosirion 4.26. — If a nested sequence (Ry), is as in Lemma 4.24 then |J,, Ry
contains all the essential atomic times of (). In particular, these times are at most
countably many.

Proof. — We show a contrapositive result. Suppose that ¢ is an essential atomic
time, that s < ¢ and s’ > t are such that Ly, o (s} # Ljs,s[, and that (R,), is
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a nested sequence of finite sets such that ¢ € J,, Ry, that Lg, st — Ljsqp and that
LR, Ajt,s'1 = Lit,s[- Then:

LR, A)s,s'[ = LRr,A]s,t[ - LR,)s,e| Dy Proposition 4.14
— Lys 41 - Ly, by assumption and by Proposition 3.38
= Ljs o[~ {t} # Ljs,s by Proposition 4.14 and the assumption.

Therefore, (R,,), cannot be as in Lemma 4.24. O

Remark 4.27. — Be careful, the property to be an essential atomic interval is true in
general neither for a union of two such (intersecting) intervals, nor for their intersec-
tion, nor for an interval containing a such interval or included in it.

Remark 4.28 and Example 4.29 are qualitative comments on the notions introduced
in Definition 4.25. They are independent of the proof of Theorem 4.21 and may be
skipped in a first reading.

REmARK 4.28

(a) Essential atomic times are of course atomic. Indeed, else, Ly is the identity
transport so Ly . Lyy . Ly = Ly . Ly for all intervals with sup/ < ¢ < inf I’ and ¢
cannot be essential.

(b) Suppose, to simplify, that some p € P(R) has exactly one atom z and consider a
family (u¢)¢er such that g = po. An obvious sufficient condition for 0 to be unessential
is to choose p; such that for a certain sequence t,, — 0, y; has an atom z,, such that
Ay, 2, O Arx (see Notation 4.4), or even only

Ve>0,3Ing: n2nyg = Ay a0, +]—6€[DA1s:

“atoms merging the same levels of quantile as z merges at ¢ = 0, accumulate on 0”.
Indeed, taking possibly a subsequence, we may suppose that (¢,), tends to zero from
the right or the left (say, from the right). For any s > ¢, the function x +— kz, (=, -)
(when it is defined i.e., ¢, < s) is constant on A, ., hence since Ljg o = lim Ly,
(see Lemma 4.23), x +— kr, (z, -) is constant on A, (use Proposition 3.27). Con-
sidering kr,,, described in Remark 4.3(c), the composition formula in Section 2.1.1
yields L]O,s[ = L{o} . L]O,s[? hence L]s’,s[\{t} = L]s/7s[ for all s’ < t.

If po has several atoms (z;);ecg, a similar statement can be shown, the condition
being that each of the intervals Ag ., has the property above.

(¢) A necessary condition for an atomic time ¢ to be unessential is immediate:
{t} x A; shall be included in B = Aj_ 4 N Ap o[, where A == U, ¢, ({r} x A,).
There is some nonempty open interval J such that J C A; ~ E. Then for ¢ small
enough, Lj;_. ¢4, restricted to J? is the identity transport, which prevents ¢t from
being essential (see Remark 4.34).

(d) The condition of point (b) is not necessary, nor that of point (c) sufficient. For
instance take pug = dp and for t # 0, (u¢): = a(t)do + (1 — a(t))d;. If a has unbounded
total variation on any interval |0, [, then any Ly, is the uniform measure on [0, 1%,
see Example 5.9, thus 0 is not essential (in fact, even not right-essential in the sense
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given in Remark 4.34). On the contrary if a has bounded total variation, none of the
measures Lo [ or Ly, o[ is uniform, hence 0 is essential (see Remark 4.34).

Exavpre 4.29. A family (u¢)ier may have an essential atomic interval and no
essential atomic time. Let I be any interval (but not a singleton) and take, e.g.,
pe = 6o for t € I and py = Aljp,1) otherwise, then I is the only essential atomic
interval of (y1¢);. Here, Qg3 = MQ for any to € 1.

We can now prove Theorem 4.21(a).

Proof of Theorem 4.21(a). — Take (R,), a sequence as given by Lemma 4.24. Then,
for any s and t > s:

Lpns = losup{Lp, s} by Lemma 4.23
=10 losup{ L qjss} as R;, C R, and by Lemma 4.10(a)
= lim Lp rs¢ = Lysy; by Lemma 4.23 and

n—oo

by property of the sets R),.
But by definition, LRﬁ]s,t[ <10 L]&t[, thus LRﬁ]s,t[ = L]&t[. O

To provide a clear proof of Theorem 4.21(b) we introduce an auxiliary notion in
Definition 4.30 below. Suppose that some P € Marg(u, pi1, - - ., ux) is disintegrated as
P = Joint(i1, kp) and that g : R — R and h : R¥ — R¥ are measurable maps. May we
disintegrate (¢g®@h)x P? In case g is into one easily checks (¢®1d) 4P = Joint(gxu, k%),
where k% is defined by k%(y,-) = k%(97(y), ), ggp-almost surely. Otherwise, the
next notion and lemma will enable us to obtain a similar disintegration, and associated
properties.

Derinirion 4.30. — We say that g : R — R fits P € Marg(u, 1, ..., pg) if there
exists a kernel k% such that k% (g(z), ) = kp(x,-), p-almost surely.

Remark 4.31

(a) If g fits P = Joint(y, k) and h is a measurable map from R” into itself we can
disintegrate (g ® h)xP as Joint(gupu, hyk$), where hyk(y,-) = k% (y, h =1 ().

(b) If ¢ fits P, it also fits P. P’ and Po P’.

(c) If g fits P € Marg(u, v1,...,v) or Q € Marg(u, v}, ...,v},), and if f : R¥ — R¥
and h : R¥ — R¥ are measurable maps, then:

(fRg@h)s("PoQ) = (f®g)#"Po(g®h)sQ.

The proofs are direct, using the definitions of a kernel, composition and concate-
nation in Section 2.1.4. Notice that, in case 1 = A[[p,1] and g is a quantile function
(which is the only case in which we will use the remark), point (c¢) is a particular case
of Lemma 4.33(b) below. In the language of this lemma, “g fits *P or Q7 means that
tP.L="'Por L.Q = Q, which both imply in particular that *P.L.Q ='P. Q.

We will need the following little technical result.
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Lemma 4.32. Takea < binR and f and g two positive bounded increasing functions

from ]a,b] to R. Then

1P 1P TP
- > -
s (s ) (s o)
with equality if and only if f or g is constant.

Proof. — The measures = fA and v = ;- f;fd)\ have the same mass f; fd.
Besides, v = 1; indeed, for any ¢ € |a, b], since f is increasing:

1

c—a

1

v
c—a

c b
n=oe.d) = = [ rar< g [ rar= ——v(-m.d).
Hence, as g is increasing, [ gdu > [ gdv, equivalent to the wished inequality.

Plainly, equality occurs if f or g is constant. If f is not constant, we in fact proved
that equality in [ g.du < [ gedv holds for g. = 1.4 if and only if ¢ € {a,b}. This
remains true for positive combinations of functions g. and, being a little careful, for
limits of them. O

Levvia 4.33. — Take peP(R), denote by g=G,, its quantile function and F=F), its
cumulative distribution function. Take L = Q(\, p).Q(p, A) and, similarly as in Nota-
tion 4.4, let (b;);cg be the atoms of p and for each i, A; be the interval |F(b; ), F(b;)|

of quantile levels merged by g on b;. Finally set A =J,c5 Ai. Moreover, take

()i, (V))i) € PR)FTH,
P e Marg(Aljo1,11 @ ®@vg) and Q€ Marg(Ajo 1], V] @ @ vp).

Suppose that P and Q have increasing kernel (for =\, in place of <o if k = 2 or
k' >2). Then:

(a) *P.L.Q equals *P.Q if and only if for each i € I, at least one of the two kernel
functions x — kp(x, - ) or x — kg(x, - ) is constant on A;,
(b) For any measurable maps f : R¥ — R¥ and h : R¥ — R¥,

‘P.L.Q="P.Q = (f@g@h)4("PoQ)=(f@g)x'Po(g®h)4Q.

Proof. — We recall particularly here that we have throughout in mind the analogy
between composition of transport plans, or of their kernels, and product of matrices,
hinted at in Remark 2.3. In the following, B; C R* and Bz C R* stand for any sets
of the type [];]—00,d;] and By for any interval |—oo,b]; (a,b,c) stand for variables
in the target of (f,g,h), and (x,y, 2) for variables in their sources. The coupling L,
equal to g, . ¢, (with g = p,.) introduced in Remark 4.3, is described in this remark.
It is such that 'P. L. Q = (P.L). (L.Q) ="'((9 ® Idg) % P) . (9 ® Id/) Q). In turn,

JE.P.— M., 2022, tome g



Tre MARKOV-QUANTILE PROCESS 49

for any measurable functions f : R* — R* and h : R* — RF':

/B ko sy, p(b, B1) - kgon),.q(b, Bs) du(b)

= Z w(bi)[kgo5), p(bis B1) - kgon),.q(bi, Bs)]
i€, b€ By

b kel 0. B) - koly ) (B dulh)
Ba~U;{bi}

as g is injective outside of A

_ /kpyf (By)) dA(y /ka, ~H(B3))dA(y)

i€d, b €B>
+ / kp(y, 1 (BY)) - k(y, b= (Bs)) dA(y).
71(BQ)\A

Then, using for instance the expression (6) given in Definition 2.8 of the concatenation,
and the fact that for any transport plans R and R, R. R’ = proj;’?’(R o R') we get:

(‘P.Q—"((¢9®1d)4P). (¢ ®1d)£Q)(B1 x Bs)

_/[0 ]kP(yyBl)kQ(yaBii)dy_/k(g@ld)#P(b,Bl)k(g®1d)#Q(b7Bg)du(b)
1

—Z/ kp(y, B1)kq(y, B3)d / kp(y, B1 dy/ kq(y, Bs)d

i€J

(27)

by (27) with B, = R, f = Id, h = Id—notice in particular that the two terms of
the difference, viewed as integrals on [0, 1], differ possibly only on A C [0, 1]. Now,
after Lemma 4.32 applied on each A; with f; : y — kp(y, B1) and g; : y — kg(y, Bs),
which are increasing since P and @ have increasing kernel, each term of the sum
is non-negative. Thus, equality holds if and only if each vanishes, which again by
Lemma 4.32 means that for each 4, f; or g; is constant. This, holding for any B
and Bs, means point (a). For point (b):

(g ® f)#P) o ((9®h)xQ)(B1 x By x Bs)

= /B k(r0g)4 P (0, B1)k(ggh) (b, Bs) du(b) by (6)
2

- / el B kgl (B))dy
+ kp(y, fY(B)dy | ko(y, h~'(Bs))dy by (27),
16323 / Py, y/ oy, h™'(By))dy by

but on each A;, by (a), kp(.,f ' (B1)) or ko(.,h™'(Bs)) is a constant function,
so the last term may be written:

/ kp(y, f~1(B1))ko(y,h " (Bs))dy,
i€, b:€Bs

and therefore the initial expression equals [, 1\ kp(y, F7Y(B1))kg(y, h~(Bs))dy,
that is to say (f ® g ® h)x(*P o Q)(B1 x By X Bs). O
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Remark 4.34. Lemma 4.33(a) provides a more precise characterization of essential
atomic times: ¢ is such a time if and only if u; has at least one atom b € R that is
both “left-essential” and “right-essential”, as follows.

— The atom b is said to be left-essential if there is some & >0 such that if s€]t—e, ¢,
the kernel  — 4}, 4/(z, -) (see Notation 4.4) is not constant on Ay,

— the atom b is said to be right-essential if there is some £ >0 such that if s € ¢, t+¢],
the kernel @ + £, s((, -) is not constant on Ay,

Let us call “left-” or “right-essential” an atomic time ¢ such that u; has at least one
left, respectively right essential atom. Left- or right-essential atomic times must not
be essential. However, they are also at most countably many. Here is a sketch of proof,
written for right-essential times: show that any such time is a discontinuity point of
some function ¢ : |—00, 5] > u — Lyy,q- Now if some ¢, is discontinuous at ¢, all ¢
are, for s’ € |t, s] (use Remark 3.36). Hence, the union of the sets of discontinuity
points of the functions ¢, for s € R, is the same as their union for s € Q. Finally the
claim below, left to the reader, implies that for each g, this set is at most countable,
which gives the result.

Cramm. If ¢ : u— M, € Marg(\, \) is increasing or decreasing for <o, it has at
most countably many (weak) discontinuity points.

Now we can prove the end of Theorem 4.21, i.e., its parts (b) and (c).

Proof of Theorem 4.21(b)(c). — Let us prove point (b). Take R C R and Levg and
Lev in Marg((A\:)ter) given by Definition 4.19. We need the following claim, that
extends Remark 4.20, and relies eventually on Remark 4.3(b):

Cramm. — If R is finite, GyLevp = Qr), where G = (2terGt).

Let us prove it. Take R C R finite and n its cardinal. We must prove that for any
finite S={JN, {8}, GyLevil N =Qpp*", where, by an abuse of notation we will
often make use of, G stands for @ ;G,. It suffices to prove it in the case S O R,
which we suppose now. We introduce the cardinals £y, ..., ¢, of the subsets of S \ R
situated between to consecutive elements r, and r;11 of RU{£o0}. We re-index these

subsets as {s¥,..., séfk} Since Levg is Markov, (projs)#LevR = Byo---0B,,, where:
1dy, o Ly, if k=0
L. old,, if k =m
L v =Ly L if £, =0
By =Ly, oldg, o Ly, ,, = { el 7ok
L[Tkﬂ“k+1] = er (¢] LTkJrl lf gk =1
L., oldyo---oldyoL,, , otherwise,
— —
L —1 ie., if { > 2,
hence we must prove that: Gx(Byo---0 By,) = [S;C]“"SN. For all r € R, the quantile

function G, = G, fits ¢ = Joint(pir, © — ¢, (z)), S0 we may take kS : 2 — 6, as
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given by Definition 4.30. Now, by Remark 4.31(b), it also fits L{,} = ‘L) = g, . ‘g
Therefore, by Remark 4.31(b) and (c), Gg(Byo---0 B,,) = Bj o---0 B, where:

(@s<r, Gs)#1dy, 0 Ly, if k=0
(®s5r,, Gs) Ly, oldy, if k=m
By, =GuBr =1 (G, ® Grp ) t(Lry, - Ly, ) if £, =0
(Gr, ® Gt ® Gryy )p(Lyy 0 Ly yy) il =1
(®m<s<m+1Gs)#( rp ©1dg, o Ly, ) otherwise, i.e., £ > 2

Proving that B), = Q(fir,, sk, - - - sk 717/4%“) will now prove the claim. For sim-
plicity we assume k ¢ {0, m} and ¢; > 1 but the other cases, which are simpler, can
be proved similarly. Observe that:

— by definition of Q and G,
Q(,urk,ys;f, .. ’uS'Zk sy ) = Law((Gr (U), ..., Gry (U)),

where U is a variable of law A on [0, 1],
~ (®rp<s<ris1 Gs)g (L, 01dg, o Ly, ) is the law of

(Grk (Ul)v Gs’f (UQ)v ceey Gs’gk (U2)7 Gm-+1 (Ud))v

where Law(Uy,Us,...,Us,Us) = By. In particular, Law(U;) = X for ¢ = 1,2,3,
Law(Uy,Usz) = Ly, , and Law(Uz, U3) = Ly, , -

So only the first and last variables may differ. Now, notice that by Remark 4.3(b)
applied to T = Ly} = ¢y . ‘qy, if two variables (U, V) satisfy Law(U, V) = Ly,}, the
law of (G,(U),G.(V)) is

tQT‘ . L{r} - 4r = th - qr . tQT - qr = tQT - qr = Id/LT,27

therefore G, (U) = G, (V') almost surely. Using this with » = r;, and (U, V) = (Uy, Ua),
respectively r = rip41 and (U, V) = (Usa, Us), we get respectively G, (Uy) = G, (Us)
and G, ,,(Uz2) = G, (Us) almost surely. The claim is proved.

Now take R C R satisfying (25) and (R, ), a nested exhaustion of it by finite sets.
Let Lev € Marg((A)ter) be the Markov process having Levst = LRn[s,y as 2-mar-
ginals. Recall that LRﬂ[s,t] = LRﬂ{s} . LRﬂ]s,t[ . LRﬁ{t} = LRm{s} . L]s,t[ . LRﬂ{t} =
limy, o0 Levpg, nfs,g = limy 00 Lev;’i. It exists by Corollary 2.13, whose assumption
is satisfied by Proposition 4.14. All these transport plans have increasing kernel, hence
by Lemma 2.23, for every S = Ule{si}:

(28) Levy ™ =Levy ™ o---oLevy "

81,52

— Lev 0--.0LevSk—15k — [,eySlr 5k,

Thus Levg, converges weakly to ITE;/, and then by Remark 3.34, GuLevg, — G#f:é;.
We are left with the tasks to prove GyLevg, = Q(g,) and GyLev = 9MQ. The former
is our claim above. Let us prove the latter.
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NortE. At the beginning of Section 4 we announced (19), i.e., GgLev = IMQ.
In fact, we prove GyLev = 9, which is a bit more difficult. To get (19) the same

arguments work, the final reasoning with Lemma 4.33(b) being replaced by a direct
use of Remark 4.31(c), as for all {ry,...,r¢}, G, fits Lev™ "¢,

We recall that 9t was defined as the unique Markov law with the same marginals
of dimension 2 as GxLev. But by (25) and Proposition 4.16(c), the 2-marginals of
G#E\e?/ and GyLev are equal. Hence it is sufficient to prove that G#LAe; is Markov,
i.e., that for all (s1,...,sk), (G#fé;)sl"“’sk = (G#IE)SI’S2 0.0 (G#Ifjgx/l)slfl’sk.

Since Lev is Markov, (Lev)s2+% = Lev®2 o ... o Lev®~1%k; besides, notice the

following fact, that we will prove a bit below:

Facr. — For all (s;)F_, € RF, Lev®* viewed as a transport plan from (R, \) to
=1
(RF=1 \®k=1) has increasing kernel (for the order <, instead of <g,)-

Hence we may conclude by using k — 1 times Lemma 4.33(b). Let us check the first
step. Since the measures *(Lev®!2) and Lev®2% have increasing kernel, we have
——51,8

only to show that Levs1:52 Levs2:%s =Lev .L{SQ}.LNevSMS7 i.e., by definition of Lev,

that Lra(s,,ss] - LRA[s2,55] = LRA[s1,50]) - Lsz - LRA[s5,55)- This amounts to checking that:

{LMSQ[ Loy ss] = Lisroool - Loy - Lispsyp i 52 € R
LJ’sl,52] . L[52,53j = Lj—Sl,SQ] . L, . L[SQ,ng' otherwise.

The second point is true by Proposition 4.14, and if s; ¢ R, by Proposition 4.26,
s is not an essential atomic time, which is the wanted equality. We finally must
prove the fact stated above. Actually it is true for any concatenation Pj o --- o Py
of couplings P; from R to R with increasing kernel —and Lev®~~** is of this type,
see (28). We check this for & = 2; the same argument, applied by induction, gives the
general case. Take By and Bj two intervals of the type |—o0,a] and z < z’; we must
show that: kp,op,(z, Bs X Bs) > kpop,(¢', By X Bs). As P, has increasing kernel,
the function kp, (-, Bs) is decreasing (thus also 1g,kp,(-, B3)). As P; has increasing
kernel, kp, (z, - ) <sto kp, (¢, - ). Thus:

kp,op,(z, By X BS)Z/kPl (xvdy)ﬂszPz(y»B:sD/kPl (z',dy)1,kp,(y, B3),

the desired result. This proves part (b) of the theorem.

Now we prove part (c). For point (i), each 2-margin Q[Sgn] and Q[Sg%] tends re-
spectively to losupn{ﬂ[sl’{tn]} and losupn{Q[SI’% ]}, which are equal by Lemma 4.23
since J,, Rn = U,, R},- Besides, if R” D R, taking a nested sequence (R ), of
finite sets such that |J,, R, = R” and R, D R, for all n, we get that, for any s
and t > s, lim, QF}’%:] =10 lim,, QF}%L] = IMNO*', but by the minimality property of
Theorem A(iii), for all n, MO>" =), ij’;m. Therefore, lim,, Q[SI’;%] = MQ*" and
the result follows. For (ii), it is sufficient to show that for any finite subsets R
and E of R with p; diffuse for all t € F, QfguE] = Qfg]. This follows plainly
from the definitions. After Definition 4.18 it amounts to showing that for all ¢t € FE,
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all {s1,...,8,} C ]—o0,t[ and all {s},...,s},} C Jt, 400, Q¥1-rt o QbS5 =
QF1osk 6105 This comes from a trivial case of Remark 4.31(c) applied with all
the measures equal to A1), P = ‘Idyx41 (e, P = Idy41), @ = Idy 41 and
(f,g,h) = (®E_,Gs,, Gy, ®f;1GS(i). Indeed, as p, is diffuse, Gy is injective, hence triv-
ially fits P and ). Then:
Qsl,...,sk,t ° Qt,s’l,.“,s;c,
= (-G, ® Gp) g 1dx j10(G ® (®§;1Gs;))# Idx w41 by definition of 9
= ((®;€=1Gs,;) ®G® (@f;lGS(L_))# Idx g+10Idx k41 by the remark

= ((®§:1GS'L) ® G ® (®§;1Gs;))# Idx gk 41

’ ’
— Qsly-~75k;t751,~~75k/

To alleviate the writing, we prove the rest of (ii), with £’ = 1 (the general proof
is alike). Take R given by point (a) and ¢ € s, s’[ some unessential atomic time of
(Nt)t; then LRnﬂ]s,s’[\{t} = Lan]S’t[ . Lan]t’Sl[ — L]s,t[ . L]t,s’[ by Lemma 2.23. Now
Lys41-Lyt,sr| = Lys, o[ since ¢ is unessential. Thus R’ = R~ {t} satisfies (25), hence (26),
by point (b).

Let us prove (iii). Suppose that I is some essential atomic interval, i.e., there is
an interval J D I such that J ~\ I is disconnected and L; # L, and assume that
INR = @. Since L; =), Lz, this means that there is some (a,a’) € ]0, 1[? such that
L;([0,a]x[0,a']) < L;1(]0,a] x[0,a’]). Denote (inf J,sup J) € R? by (s,s'). Ifa & A,
and o’ ¢ Ay (see Notation 4.4), i.e., if G([0,a"]) = [0,G(a")], then, pushing the
inequality by G, and reminding that, since I "R = @, L1 =10 lim, Lgr, s, so that
L; ;1([0,a] x [0,a']) < lim,, Lg,As([0,a] x [0,a']), we get:

(29) SJTDS’S/(]—OO,G(CL)] X ]—00,G(a")]) < nlLIEOQfg;](]—m,G(a)] X |—00, G(a")]).

Therefore lim,, o Q[r,] cannot be equal to MY and we are done. If a € A, let A =
Jao, a1[ be the connected component of As containing a; notice that {ag,a1}NA = @.
We prove that (29) holds with ag or a; in place of a. By construction of Lg for
any set E having s as minimum, the functions b — kr (b, .), the values of which
are measures on [0, 1], are constant on A. Applying this for £ = L,y and E =
Lisyug1, we get that either (i) below is true, or the restrictions of L; and L s to
[0, ap] % [0, a’] coincide, thus necessarily (ii) is true (we let {s} U .J appear instead of J
but this does not matter by Remark 4.17):

(1) Lispus([0,a0] % [0,a"]) < Lispus1([0,ao] x [0, a]),

(ii) on A, kL{s}uJ (bv [Oa a/]) < kL{s}UJ\I(b’ [0,0,/]),
and if (i) is false and (ii) is true then L;([0,a1] X [0,a]) < L;1([0,a1] x [0,a']).
Hence anyway (29) holds with ag or a; in place of a. Proceed symmetrically for o’
if @’ € Ay . This shows point (iii). O

Remark 4.35. — The proof of Theorem 4.21(c)(ii) shows directly the last sentence of
Remark 1.8(a). Indeed it shows that if every pu; is diffuse, then for all finite R C R,
Q(r) = Q, which gives an expression of the Markov property, see Definition 2.11.
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5. EXAMPLES AND OPEN QUESTIONS
5.1. ExampLE OF MARKOV-QUANTILE PROCESSES ATTACHED TO DISCRETE MEASURES ON N
In this section x4 is the positive part max{0,z} of any = € R.
Exawrre 5.1 (Discrete measures). — Let (it)e[0,1] be concentrated on N for every ¢
and assume that for every k € N the map Ay : t — Zf:o wi (i) is in €*(]0,1]) and

piecewise monotone (e.g., Ay is analytic). Let moreover A_; be the zero constant
function. We assume that:

e (S0, At 0

pi(k) 7 (k)

is bounded from above for (¢,k) € [0,1] x N. Then, using the characterization of
the Markov-quantile process as a limit of quantile couplings, namely Theorem A(iv),
it can be proved that the Markov-quantile process (X¢):c[o,1] is the time continuous
Markov chain with jump rate g x+1 = (=A% (t))+ /1 (k) from k to k+1, and g k-1 =
(A} _1(t)+/pe(k) from k to k — 1 and g ; = 0 for |j — k| # 1. Denoting P(X; = k)
by pi it means that the so-called forward Kolmogorov-Chapman system is satisfied:

dpg P141,0 — Poqo,1 if k=0,
7(75 — .
dt Ph41Gk+1,k + Ph—1Qk—1,k — Ph(Qho—1 + Qrpt1) if b € N*,

where the derivative is a right derivative. Recall that the jump rate is defined for
i # j by:

. P( Xy = Xy =0)
i) =1
¢ii(t) = lim N
The classical theory that can be read in Feller’s book [13, Chap. XVII, §9] and the

references therein (see also [10]) ensures that our process is solution of the forward

Kolmogorov—Chapman system. The uniqueness of the solution for a Markov process
is obtained from the uniform bound on the rates g; ;(t).

In place of a complete proof let us compute the jump rate in a typical case. Notice
before that similar computations can be found in [24, §4]. We are looking for the
jump rate gy r41(t) in the case of A := Ayp_; and B := Ay locally decreasing on
the right of ¢t. At every time ¢ the atomic measure p; is completely described by the
partition of the interval [0, 1] of quantile levels through the sequence (Ag(t))ren. In-
deed, |Ax_1(t), Ax(t)[C [0, 1] is the interval of the quantile levels of the atom p (k).
Recall that both A and B are in €!(]0,1]). We can assume that h is so small that
B(t+ h) > A(t). For {r',r"} C [t,t + h] with 7" < r” and r” close to 7/, the quan-
tile coupling between pu,» and p,~ transports the main part of the mass of the atom
wr ({k})0x on itself and the rest on the atoms . ({k'})dy with &' > k. We aim at

proving that the conditional probability to be still in k£ at time ¢ + h is:
B'(t) 2
(30) 1— h+O(h?).
(B - A1)
Since the probability to jump more than twice is O(h?), (30) furnishes the announced
jump rate gy g+1(t) = (—A(t))+/1e(k) in the case of decreasing functions. So let us

prove (30).
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We consider a partition R = {ro,...,r,} of [t,t 4+ h] with (ro,rm) = (t,t + h) and
the discrete quantile Markov chain associated with it. As A and B are decreasing,
note that no mass can leave the quantile level interval [A, B] and come back on it in
the same time interval [t,t+ h]. On [r,, 7,41] the probability to stay in the interval is

B(Tn+1) - A(rn) —1_ B(rn) - B(rnJrl)
B(rn) — A(ry) B(rn) — A(ry)

as one can easily convince oneself with a picture similar to the left part of Figure 2.

We let the proof of the following fact to the reader: there exists § = O(h) such that

for every 7/ < r” in [t,t + h] we have:

o(—+8)B' ()" —r") /(B=A)(1)) < B(r") — A(r') < (=B )" —r")/(B=A) (1))
B() — Al
We obtain this estimate for each interval [r,, 7n,+1] C [t, t+h]. Multiplying all together,
we see that the probability to stay on the same state after m steps is in
B'(t) B'(t)
[exp(—(l +9) R0 h),exp(—(l —9) R0 h)},
where 6 = O(h). A simple Taylor expansion gives (30).

Examrre 5.2 (Poisson distributions). — Elaborating on the last example we consider,
for t € RT, uy = P(t), where P(t) is the Poisson law of parameter ¢. In this case
Ap(t) = Zf:o exp(—t)t'/i! so that the jump rate g x+1(t) is constantly 1 for every k
and t, and the other rates are zero. We recover the Poisson process. Note that the
Poisson laws are in stochastic order, which matches with the increasing trajectories
of the Poisson counting process.

Exampre 5.3 (Binomial distributions). In this example p; = B(n,t) for t € [0, 1].
Let us define a Markov process X = (X¢)icj0,1) € Marg((pe):) and compute its
jump rates; we will then see that Law(X) = 91Q. We define X on the probabil-
ity space [0,1]" by X : (a1,...,an) = D1 _g La,eo,4, 50 its law is u;. The fact that
(Xt)tepo,1] is Markov comes from the following coarse argument: provided k coordi-
nates of & = (aq,...,,) are smaller than ¢, the distribution is uniform on [0, #]"
for the k coordinates of the past of ¢ and on [t,1]"~* for the n — k of its future.
Between ¢ and ¢ + h the probability to have (at least, as well as exactly) one jump is
[(n—k)h/(1 —t)]+O(h?). As Ak(t) = Zf:o (M)t (1—t)"~* with the notation of Exam-
ple 5.1, it can easily be checked that (n — k)/(1 — t) = A} (t)/w(k), which proves that
(Xt)te[o,1) is the Markov-quantile process attached to (pu)icjo,1)- This example could
be of interest with respect to previous works on the entropic interpolation on graphs
as, e.g., [17, 32].

5.2. ExAMPLE OF MARKOV-QUANTILE TRANSPORT PROCESSES. The following examples
are also related to the relations of the Markov-quantile process with the Continuity
Equation extensively explained in [8] and that we evoked in the introduction in Sec-
tion 1.4. In particular, we will consider processes tangent to a non-autonomous vector
field on R. Basically, in the examples, u; is made of two parts that are translated
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in opposite directions and cross. We examine three crossing situations for atomic or
diffuse measures.

Exampre 5.4 (One atom crossing a diffuse measure). Consider p = (1¢)¢ef0,1) With
e = %)\L[t_3/4,t_1/4]+%50. This is the family of marginals of a simple process I' with
affine trajectories, defined by I'(t — 0) = 1/2 and T'({t — zo +1¢ : z9 € A}) =
Al[—3/4,—1/4)(A). This is not the Markov-quantile process attached to p but it is a
Markov process and it is tangent to the vector field defined by:

v(r) =0if £ =0 and wv¢(x) =1 otherwise.

Now the theory of the Continuity Equation developed in [2] and that we reexplain in [8]
permits to identify v as a minimal vector field (for the Benamou—Brenier functional)
since the quantile process is also almost surely an integral curve of it. Therefore, as
the quantile process does, the process Y := (Y;)[p,1] ~ I' is minimizing E(€(X)) the
expected energy that we briefly presented in Section 1.4, among the processes with
marginals p.

The Markov-quantile process (X¢):e0,1] attached to (u¢)¢ejo,1) can be described as
follows: the trajectories start according to po and are piecewise affine, with pieces
taken from the affine curves above. Provided Xy € [—3/4,—1/4], the first piece is
X: = Xo+t on [0,7], where 7 = —Xj. The second affine piece is constant equal to
zero on [r,min(7 4 n, 1)], where 1 is an exponential random variable of parameter 2,
independent from Xj. The third piece, if it exists, is affine of slope 1, namely X; =
t—(t+4+mn)on [r+n,1].

Finally, in the present example, as I', the Markov-quantile process is minimizing
E(&(X)), but unlike it and in addition, it has increasing kernels and is a strongly
Markovian process.

Exampre 5.5 (Crossing of two purely atomic measures). — Consider two measures «
and /3 of mass 1/2, concentrated on the rational numbers of [0, 1], with finite or infinite
support. Let 74 be the translation of vector ¢ in R. Set

p=()ter = ((Te) g + (7—t) % B)ter.

As in Example 5.4 the measure I' € Marg(u) is concentrated on the space of piecewise
affine paths (of slopes 1 and —1) is a minimizer of the action. The two measures
(r¢)pa and (7_¢)4 0 are both concentrated on Q when ¢ € Q and they are mutually
singular if ¢ ¢ Q. Hence according to [8], the optimal vector field (vt);eo,1] satisfies
I' ® Al [0,1-almost surely v; = #1. It can be checked that the Markov-quantile process
is again piecewise affine with a random finite number of changes of slope. Interesting
exercises on the Markov-quantile process can be considered, as for instance finding
the probability for a trajectory coming from —oo in —oo to tend to +oco in +o00. Note
that the situation seems to be well approached by truncating the measure to finitely
many ‘big’ atoms. This corresponds to the case of a and [ with finite support. In
this particular case the above mentioned exercise reduces to the so-called ‘gladiator
game’ [27] that is a stochastic version of Borel’s Blotto game [42].
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Examrre 5.6 (Crossing of two diffuse measures). Consider
pt = M pp—2,e—1)F A [1=t,2—4
and again I' such that
F({t=t+zo: 1o€A}) = M[—2,—1)(4) and T({t > xo—1t: z0€A}) = A[1,2)(4).

Unlike in the previous examples, I" does not minimize A on Marge(x). All the mea-
sures yu; are continuous so that the Markov-quantile process (X;):cr is the quantile
process. It is affine by part and continuous. With probability 1/2, in fact if X, < 0,
first it has slope 1, then slope 0 on [(1 — X)/2, (54 X)/2] and finally slope —1.
If Xy > 0, the process (X;); starts with slope —1, is flat on [(1 4+ X)/2, (5 — X)/2]
and continues with slope 1 after (5 — X)/2.

o
5.3. THEORETIC MARKOV-QUANTILE PROCESSES

Exampre 5.7 (One atom with regular level functions). — Take (p¢)¢c[o,1] such that
for every t, u; has exactly one atom x; € R and the interval of quantile levels of this
atom at time ¢ is JA(t), B(t)[. Assume moreover that A and B are of class €' and
piecewise monotone. Then the Markov-quantile process (X¢):c[o,1] can be described
using two Poisson point processes of jump rates (A’), /(B — A) and (B')_/(B — A).
Conditionally on F),, (X;) € |A(t), B(t)[, we have X; = x; until the next time ¢ty >t
in the point process. Then the process (X;); leaves z; and starts a piece of quantile
trajectory constant in the space [0, 1] of quantile levels with value A(to) or B(tg). The
process may hit again z; if there exists some t; > to with A(t1) = x4, or B(t1) = x4,
respectively.

The next remark is of general interest and particularly significant with respect
to Remark 5.8. It presents the Markov-quantile process as one end of the spectrum
of processes of law in Marg(u) that satisfies (ii) of Theorem A, i.e., have increasing
kernels, the other end being the independent process.

Remark 5.8. — The minimality condition (iii) of Theorem A satisfied by the Markov-
quantile process (X;): attached to some (u;): can also be stated as follows. For every
process (Yi):cr satisfying (i) and (ii) of Theorem A, for every s < ¢ and every z € R
it holds:

Law(X:| Xs < 2) g0 Law(Y;| Vs < ).
A similar relation that concerns maxima of =g, in place of minima is satisfied by the
independent process (Z;):cr. If a process (Y;); has increasing kernels, we obtain:

Law (Y| Ys < ) =st0 Law(Y:| Ys < +00) = Law(Y;) = Law(Z;| Zs < z).

We conclude with the following result: Assume that for some s < t and (X3); the
Markov-quantile process, X, is independent of X;. Then for any process (Y;); satis-
fying (i) and (ii) of Theorem A, we have for every = € R:

Mt = La,W(Xt| Xs < Jf) jsto LaW(}/t| }/& < x) jsto LaW(Zt| ZS g 'T) = M,
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so that, due to the Markov property, for every s’ < s and ¢’ > t, Yy and Y} are
independent.

Examrre 5.9 (Two atoms). We set puy = a(t)do + b(¢)d; with a + b =1 but do not
assume any regularity on the functions a and b. Let (X;); be the Markov-quantile
process. We shall show that X; and X; are independent if and only if the total
variation of a (or b) on [s, t] is infinite or m ; = min(inf, 4 a,inffs 4 b) = 0. If my, =0
the independence is true for any Markov process. Indeed, by assumption, for any € > 0,
we may take r such that P(X, = 0) is small enough so that P(X, = 0|X; = 0) < ¢,
P(X,=1Xs=0)>1—¢,and |[P(X; =0|X, =1) — P(X; = 0)| <e. Then:
= |P(X; = 0| X, = 0)P(X, = 0|X, = 0)
+P(X¢ = 0|X, = 1)P(X, = 1|X, =0) - P(X; = 0)|
since X is Markov
P(X; =0|X,=1) —P(X; =0)| + 2¢

<
< 3g,

which is the wanted independence.

Hence, we assume that ms; > 0 and that a takes values in [ms,, 1 — m,] in
e = a(t)dg+b(t)d1. We are left with the task to prove that independence is equivalent
to a infinite total variation of a on [s,¢]. Let 6y be the uniform measure on [0, a(s)].
Our goal reduces to establishing A\ = 0ol = stosupg 0oly, by, -+ - Ly, , Wwhere R
ranges among the partitions {rg,...,r,} with (r9,7,) = (s,t). For the measures
under consideration, if a(rg—1) < a(ry) < a(rry1) or alry—1) = a(ry) = a(rgy1) it
holds £, lilips1 = Ly by, -
that the sequence (a(rx))g=o,... m has increments with alternating sign, for instance
a(rogt1) = a(rey) for every k. We define 6,, = 6ol - - - ¢,

The measure 6,, can be written in the form:

On = dnXo,a(r)] T A Aa(r) 1] € M,

Therefore we can assume without loss of generality

"t

where d,, = a(r,)10,,([0,a(r,)]) in fact parametrizes the complete measure. Note,
after Remark 5.8 that 6,, <o A, which means d,, > 1 > d},. As a(ry,) € [ms, 1 —mg 4],
the sequence converges to A if and only if d,, — 1.

Recalling the effect of the kernel ¢ described on Figure 3 and defined in Nota-
tion 4.4(b), we find:

Trn+41?

oD%
o =0

The product T, min(aff(:Jf)l), 1;fi?:+)l)) can be arbitrarily close to zero (over all

partitions of [s,t]) if and only if a € [ms 4,1 — m,,] has infinite total variation. This

if a(rp+1) < a(ry),
dn+1 -1=
otherwise.

proves the claimed equivalence.
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Exampre 5.10 (One atom on the lower levels). Consider (f1¢)¢ef0,1) such that for
every t, u; has exactly one atom and this atom is between the quantile levels A(t) = 0
and B(t). An example is pu; = B(¢)dp + (1 — B(t))E(1), where §y is the Dirac mass in
zero and £(1) the exponential law of parameter 1. No regularity assumption is made
on B. Similar observations as in Example 5.9 permit us to specify the kernel between
time s and ¢ > s. Let a4 be sup,.¢c[, 4 B(r). Then Ly, 4 is simply the uniform measure
of mass a; on [0, ozs7t]2 plus the one-dimensional uniform measure of mass 1 — o ¢
on the diagonal between (¢, as¢) and (1,1). The same for the kernel ¢, reads:

(e, ) = | i Lo 1o < s,
' O if x> agy.

A particle of quantile value < a,; at time s is uniformly mapped at time ¢ on the
particles of quantile levels [0, as ¢]. If the quantile value at time s is greater that a4,
the particle keeps on with the same level until time ¢ as if it were the quantile process.

5.4. TRANSFORMATIONS OF MARKOV-QUANTILE PROCESSES

Exampre 5.11 (Markov-quantile processes). — According to (u:)t, a quantile process
may be Markov or not. Recalling Remark 1.8 (b), if Q is Markov it coincides with the
Markov-quantile process. As proved in [23, Prop. 3], the criterion is the following: the
process is not Markov if and only if there exists o # o’ € [0,1] and 1 < t5 < t3 such
that the a-quantile and the a’-quantile of u;, are equal but that those of p;, and
differ. This can be summarized saying that “X’s are forbidden”, where X refers to the
shape of the letter, the four ends being G, (o), G, (&), G, (a) and G, (), the
intersection being G, (o) = G, (/). Other letters like O, Y and Z are allowed.

Remark 5.12 (Reversal of time and twist of space and time). — If (X;)ier is the
Markov-quantile process attached to (u¢):er then X_; is the Markov-quantile process
in Marg((p—¢)ter). This comes from Theorem A (iv) on the limit of products of
quantile couplings and the fact that *Q(u,v) = Q(v, ). More generally, for every
homeomorphism ¢ from R into R, X, has law the Markov-quantile measure of
Marg( (14 (+))ter). Of course non-injective monotone continuous map ¢ may be used
too.

Moreover, if for all ¢, f; : R — R are strictly monotone functions with the same
orientation for all ¢, the process f;(X;) is a Markov-quantile process.

Remark 5.13. — The Markov-quantile process being time-reversible, and as a cou-
pling P € Marg(yu, v) has increasing kernel if and only if *P € M™ (v, u) and P =), Q
is equivalent to *P <), '@ (recall Remark 3.16 and Definition 3.4), points (ii) and (iii)
of in Theorem A can be replaced by

(ii") For every s < t, MO** € M™(us, pt), and

(iii’) for every s < t, MO>" is a minimal coupling for <;, among the processes
satisfying (i) and (ii’).
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-4
5.5. OpEN QUESTIONS

~

5.5.1. Markovinification

(a) We may interpret the resulting process in Theorem 2.26 as the Markov process
that has infinitesimally the same transitions as P. However, as it depends on the
choice of the partitions, this Markov process is not a priori uniquely determined.
At which conditions is this Markov process uniquely determined and how can it be
characterized? If the initial process is a quantile process, we proved in Theorem A
that the answer is yes, without condition, and characterized it using orderings.

(b) In Theorem B we proved that Markovinification of the quantile process occurs
for processes (Q[r,))n in place of consistent (see Definition 2.14) transport plans.
Does an existence statement analogous to Theorem 2.26 happen when we consider
sequences (Pg,1)n?

5.5.2. The Kellerer theorem in dimension d > 2. — Kellerer proved Theorem 1.17 for
martingales in R. For measures (1) on R?, increasing in convex order, it is known that
there exists an associated martingale [19, 3] but not whether one of them is Markov.
This is a major question. Note that another interpretation of the question in higher
dimension is possible when considering martingales indexed by a multidimensional
set (see [18, Prob. 7b]). This problem was solved in [23].

5.5.3. Markoy Kamae—Krengel theorem. — Kamae and Krengel proved in [26] that
if (ut)ter are measures on a partially ordered Polish space E such that ¢ — gy is
increasing for the stochastic order, in the sense that t — [ fdu is increasing for any
increasing bounded f : E — R, there exists an increasing process (X;); with law in
Marg (). We proved in Theorem A and C that if E is R, the process can moreover
be Markov. A natural problem is whether this is also true for any F.

5.5.4. Strong Markoy property. — The Markov-quantile process is not always the
unique Markov process that minimizes the energy &, as is shown in Example 5.4.
However in this example 99 is strongly Markovian. Is the Markov-quantile process
strongly Markovian for every (u);? Does the strong Markov property characterize it
for curves of finite energy?
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