Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators
Journées équations aux dérivées partielles (2018), Talk no. 11, 11 p.

We review the calculus of metaplectic operators and shifts in phase space applied to Gaussian wave packets. Using holomorphic extensions of this calculus, one can reduce the L 2 theory of evolution equations with non-selfadjoint quadratic generators to symplectic linear algebra. We illustrate these methods through an application to the quantum harmonic oscillator with complex perturbation ix.

Published online:
DOI: 10.5802/jedp.671
Viola, Joe 1

1 Université de Nantes Nantes France
@article{JEDP_2018____A11_0,
     author = {Viola, Joe},
     title = {Applications of a metaplectic calculus to {Schr\"odinger} evolutions with non-self-adjoint generators},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:11},
     pages = {1--11},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2018},
     doi = {10.5802/jedp.671},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.671/}
}
TY  - JOUR
AU  - Viola, Joe
TI  - Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators
JO  - Journées équations aux dérivées partielles
N1  - talk:11
PY  - 2018
SP  - 1
EP  - 11
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.671/
DO  - 10.5802/jedp.671
LA  - en
ID  - JEDP_2018____A11_0
ER  - 
%0 Journal Article
%A Viola, Joe
%T Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators
%J Journées équations aux dérivées partielles
%Z talk:11
%D 2018
%P 1-11
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.671/
%R 10.5802/jedp.671
%G en
%F JEDP_2018____A11_0
Viola, Joe. Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators. Journées équations aux dérivées partielles (2018), Talk no. 11, 11 p. doi : 10.5802/jedp.671. http://www.numdam.org/articles/10.5802/jedp.671/

[1] Aleman, Alexandru; Viola, Joe Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288

[2] Aleman, Alexandru; Viola, Joe On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | Zbl

[3] Bargmann, Valentine On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214

[4] Bismut, Jean-Michel A survey of the hypoelliptic Laplacian, Géométrie différentielle, physique mathématique, mathématiques et société. II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 39-69 | Zbl

[5] Gadat, Sébastien; Miclo, Laurent Spectral decompositions and 𝕃 2 -operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 317-372

[6] Hörmander, Lars L 2 estimates for Fourier integral operators with complex phase, Ark. Mat., Volume 21 (1983) no. 2, pp. 283-307

[7] Hörmander, Lars The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, 1994 | Zbl

[8] Hörmander, Lars Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995) no. 3, pp. 413-449

[9] Krejčiřík, David; Siegl, Petr; Tater, Miloš; Viola, Joe Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 53 (2015) no. 10, 103513, 32 pages | Zbl

[10] Leray, Jean Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981 (translated from the French by Carolyn Schroeder) | Zbl

[11] Mityagin, Boris; Siegl, Petr; Viola, Joe Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175

[12] Said, Mona Ben; Nier, Francis; Viola, Joe Quaternionic structure and analysis of some Kramers-Fokker-Planck operators (2018) (https://arxiv.org/abs/1807.01881)

[13] Sjöstrand, Johannes Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130

[14] Sjöstrand, Johannes Lectures on resonances (2002) (http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf)

[15] Trefethen, Lloyd N.; Embree, Mark Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, 2005 | Zbl

[16] Viola, Joe The norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 85 (2016) no. 4, pp. 513-538

[17] Viola, Joe The elliptic evolution of non-self-adjoint degree-2 Hamiltonians (2017) (https://arxiv.org/abs/1701.00801)

[18] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012

Cited by Sources: