We review the calculus of metaplectic operators and shifts in phase space applied to Gaussian wave packets. Using holomorphic extensions of this calculus, one can reduce the theory of evolution equations with non-selfadjoint quadratic generators to symplectic linear algebra. We illustrate these methods through an application to the quantum harmonic oscillator with complex perturbation .
@article{JEDP_2018____A11_0, author = {Viola, Joe}, title = {Applications of a metaplectic calculus to {Schr\"odinger} evolutions with non-self-adjoint generators}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:11}, pages = {1--11}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.671}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.671/} }
TY - JOUR AU - Viola, Joe TI - Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators JO - Journées équations aux dérivées partielles N1 - talk:11 PY - 2018 SP - 1 EP - 11 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.671/ DO - 10.5802/jedp.671 LA - en ID - JEDP_2018____A11_0 ER -
%0 Journal Article %A Viola, Joe %T Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators %J Journées équations aux dérivées partielles %Z talk:11 %D 2018 %P 1-11 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.671/ %R 10.5802/jedp.671 %G en %F JEDP_2018____A11_0
Viola, Joe. Applications of a metaplectic calculus to Schrödinger evolutions with non-self-adjoint generators. Journées équations aux dérivées partielles (2018), Talk no. 11, 11 p. doi : 10.5802/jedp.671. http://www.numdam.org/articles/10.5802/jedp.671/
[1] Singular-value decomposition of solution operators to model evolution equations, Int. Math. Res. Not., Volume 2015 (2015) no. 17, pp. 8275-8288
[2] On weak and strong solution operators for evolution equations coming from quadratic operators, J. Spectr. Theory, Volume 8 (2018) no. 1, pp. 33-121 | Zbl
[3] On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 187-214
[4] A survey of the hypoelliptic Laplacian, Géométrie différentielle, physique mathématique, mathématiques et société. II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 39-69 | Zbl
[5] Spectral decompositions and -operator norms of toy hypocoercive semi-groups, Kinet. Relat. Models, Volume 6 (2013) no. 2, pp. 317-372
[6] estimates for Fourier integral operators with complex phase, Ark. Mat., Volume 21 (1983) no. 2, pp. 283-307
[7] The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, 1994 | Zbl
[8] Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z., Volume 219 (1995) no. 3, pp. 413-449
[9] Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys., Volume 53 (2015) no. 10, 103513, 32 pages | Zbl
[10] Lagrangian analysis and quantum mechanics. A mathematical structure related to asymptotic expansions and the Maslov index, MIT Press, 1981 (translated from the French by Carolyn Schroeder) | Zbl
[11] Differential operators admitting various rates of spectral projection growth, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3129-3175
[12] Quaternionic structure and analysis of some Kramers-Fokker-Planck operators (2018) (https://arxiv.org/abs/1807.01881)
[13] Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat., Volume 12 (1974), pp. 85-130
[14] Lectures on resonances (2002) (http://www.math.polytechnique.fr/~sjoestrand/CoursgbgWeb.pdf)
[15] Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, 2005 | Zbl
[16] The norm of the non-self-adjoint harmonic oscillator semigroup, Integral Equations Oper. Theory, Volume 85 (2016) no. 4, pp. 513-538
[17] The elliptic evolution of non-self-adjoint degree-2 Hamiltonians (2017) (https://arxiv.org/abs/1701.00801)
[18] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012
Cited by Sources: