Correlation spectrum of Morse-Smale gradient flows
Journées équations aux dérivées partielles (2017), Talk no. 6, 13 p.

In this note, we review our recent works devoted to the spectral analysis of Morse-Smale flows. Then we give applications to differential topology and to the spectral theory of Witten Laplacians.

Published online:
DOI: 10.5802/jedp.656
Dang, Nguyen Viet 1; Rivière, Gabriel 2

1 Institut Camille Jordan (U.M.R. CNRS 5208) Université Claude Bernard Lyon 1 Bâtiment Braconnier 43, boulevard du 11 novembre 1918 69622 Villeurbanne Cedex, France
2 Laboratoire Paul Painlevé (U.M.R. CNRS 8524) U.F.R. de Mathématiques Université Lille 1 59655 Villeneuve d’Ascq Cedex, France
@article{JEDP_2017____A6_0,
     author = {Dang, Nguyen Viet and Rivi\`ere, Gabriel},
     title = {Correlation spectrum of {Morse-Smale} gradient flows},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:6},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.656},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.656/}
}
TY  - JOUR
AU  - Dang, Nguyen Viet
AU  - Rivière, Gabriel
TI  - Correlation spectrum of Morse-Smale gradient flows
JO  - Journées équations aux dérivées partielles
N1  - talk:6
PY  - 2017
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.656/
DO  - 10.5802/jedp.656
LA  - en
ID  - JEDP_2017____A6_0
ER  - 
%0 Journal Article
%A Dang, Nguyen Viet
%A Rivière, Gabriel
%T Correlation spectrum of Morse-Smale gradient flows
%J Journées équations aux dérivées partielles
%Z talk:6
%D 2017
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.656/
%R 10.5802/jedp.656
%G en
%F JEDP_2017____A6_0
Dang, Nguyen Viet; Rivière, Gabriel. Correlation spectrum of Morse-Smale gradient flows. Journées équations aux dérivées partielles (2017), Talk no. 6, 13 p. doi : 10.5802/jedp.656. http://www.numdam.org/articles/10.5802/jedp.656/

[1] Baladi, V.; Tsujii, M. Dynamical determinants and spectrum for hyperbolic diffeomorphisms, Geometric and probabilistic structures in dynamics (Contemp. Math.), Volume 469, Amer. Math. Soc., Providence, RI, 2008, pp. 29-68

[2] Bismut, J.-M.; Zhang, W. An extension of a theorem by Cheeger and Müller, Astérisque (1992) no. 205, 235 pages (With an appendix by François Laudenbach)

[3] Blank, M.; Keller, G.; Liverani, C. Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002) no. 6, pp. 1905-1973

[4] Brunetti, R.; Fredenhagen, K. Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds, Comm. Math. Phys., Volume 208 (2000) no. 3, pp. 623-661

[5] Butterley, O.; Liverani, C. Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 301-322

[6] Dang, N.V. Renormalization of quantum field theory on curved space-times, a causal approach, arXiv preprint arXiv:1312.5674 (2013)

[7] Dang, N.V. The extension of distributions on manifolds, a microlocal approach, Ann. Henri Poincaré, Volume 17 (2016) no. 4, pp. 819-859

[8] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale gradient flows (2016) (Preprint arXiv:1605.05516)

[9] Dang, N.V.; Rivière, G. Pollicott-Ruelle spectrum and Witten Laplacians, arXiv preprint arXiv:1709.04265 (2017)

[10] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale flows I: Construction of the anisotropic Sobolev spaces (2017) (Preprint arXiv:1703.08040)

[11] Dang, N.V.; Rivière, G. Spectral analysis of Morse-Smale flows II: Resonances and resonant states (2017) (Preprint arXiv:1703.08038)

[12] Dang, N.V.; Rivière, G. Topology of Pollicott-Ruelle resonant states (2017) (Preprint arXiv:1703.08037)

[13] Dyatlov, S.; Zworski, M. Stochastic stability of Pollicott-Ruelle resonances, Nonlinearity, Volume 28 (2015) no. 10, pp. 3511-3533

[14] Dyatlov, S.; Zworski, M. Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 3, pp. 543-577

[15] Dyatlov, S.; Zworski, M. Ruelle zeta function at zero for surfaces, Inv. Math. (2017) (To appear)

[16] Faure, F.; Sjöstrand, J. Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364

[17] Frenkel, E.; Losev, A.; Nekrasov, N. Instantons beyond topological theory. I, J. Inst. Math. Jussieu, Volume 10 (2011) no. 3, pp. 463-565

[18] Fried, D. Lefschetz formulas for flows, The Lefschetz centennial conference, Part III (Mexico City, 1984) (Contemp. Math.), Volume 58, Amer. Math. Soc., Providence, RI, 1987, pp. 19-69

[19] Harvey, F.R.; Lawson, H.B. Jr. Morse theory and Stokes’ theorem, Surveys in differential geometry (Surv. Differ. Geom., VII), Int. Press, Somerville, MA, 2000, pp. 259-311

[20] Harvey, F.R.; Lawson, H.B. Jr. Finite volume flows and Morse theory, Ann. of Math. (2), Volume 153 (2001) no. 1, pp. 1-25

[21] Helffer, B.; Sjöstrand, J. Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340

[22] Laudenbach, F. Transversalité, courants et théorie de Morse, Éditions de l’École Polytechnique, Palaiseau, 2012, x+182 pages (Un cours de topologie différentielle. [A course of differential topology],)

[23] Liverani, C. On contact Anosov flows, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312

[24] Minervini, G. A current approach to Morse and Novikov theories, Rend. Mat. Appl. (7), Volume 36 (2015) no. 3-4, pp. 95-195

[25] Nelson, E. Topics in dynamics. I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969, iii+118 pages

[26] Palis, J. Jr.; de Melo, W. Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982, xii+198 pages (An introduction, Translated from the Portuguese by A. K. Manning)

[27] Schwartz, L. Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X., Hermann, Paris, 1966, xiii+420 pages

[28] Smale, S. Morse inequalities for a dynamical system, Bull. Amer. Math. Soc., Volume 66 (1960), pp. 43-49

[29] Thom, R. Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris, Volume 228 (1949), pp. 973-975

[30] Tsujii, M. Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, pp. 1495-1545

[31] Tsujii, M. Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform, Ergodic Theory Dynam. Systems, Volume 32 (2012) no. 6, pp. 2083-2118

[32] Weber, J. The Morse-Witten complex via dynamical systems, Expo. Math., Volume 24 (2006) no. 2, pp. 127-159

[33] Witten, E. Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, p. 661-692 (1983)

Cited by Sources: