Approximate spectral theory and wave propagation in quasi-periodic media
Journées équations aux dérivées partielles (2017), Talk no. 5, 12 p.

In this article we make specific in the quasi-periodic setting the general Floquet-Bloch theory we have introduced for stationary ergodic operators together with the associated approximate spectral theory. As an application we consider the long-time behavior of the Schrödinger flow with a quasi-periodic potential (in the regime of small intensity of the discorder), and the long-time behavior of the wave equation with quasi-periodic coefficients (in the homogenization regime).

Published online:
DOI: 10.5802/jedp.655
Benoit, Antoine 1; Duerinckx, Mitia 2; Gloria, Antoine 3; Shirley, Christopher 2

1 Université du Littoral Laboratoire de Mathématiques Pures et Appliquées Bâtiment Point Carré 50 Rue Ferdinand Buisson 62100 Calais, France
2 Université Libre de Bruxelles (ULB) Département de mathématiques Campus Plaine CP 213 Boulevard du Triomphe B-1050 Bruxelles, Belgique
3 Sorbonne Université UMR 7598, Laboratoire Jacques-Louis Lions F-75005, Paris, France
@article{JEDP_2017____A5_0,
     author = {Benoit, Antoine and Duerinckx, Mitia and Gloria, Antoine and Shirley, Christopher},
     title = {Approximate spectral theory  and wave propagation in quasi-periodic media},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:5},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.655},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.655/}
}
TY  - JOUR
AU  - Benoit, Antoine
AU  - Duerinckx, Mitia
AU  - Gloria, Antoine
AU  - Shirley, Christopher
TI  - Approximate spectral theory  and wave propagation in quasi-periodic media
JO  - Journées équations aux dérivées partielles
N1  - talk:5
PY  - 2017
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.655/
DO  - 10.5802/jedp.655
LA  - en
ID  - JEDP_2017____A5_0
ER  - 
%0 Journal Article
%A Benoit, Antoine
%A Duerinckx, Mitia
%A Gloria, Antoine
%A Shirley, Christopher
%T Approximate spectral theory  and wave propagation in quasi-periodic media
%J Journées équations aux dérivées partielles
%Z talk:5
%D 2017
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.655/
%R 10.5802/jedp.655
%G en
%F JEDP_2017____A5_0
Benoit, Antoine; Duerinckx, Mitia; Gloria, Antoine; Shirley, Christopher. Approximate spectral theory  and wave propagation in quasi-periodic media. Journées équations aux dérivées partielles (2017), Talk no. 5, 12 p. doi : 10.5802/jedp.655. http://www.numdam.org/articles/10.5802/jedp.655/

[1] G. Allaire, M. Briane, and M. Vanninathan. A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SeMA Journal, pages 1–23, 2016. in press.

[2] J. Asch and A. Knauf. Motion in periodic potentials. Nonlinearity, 11(1):175–200, 1998.

[3] A. Benoit and A. Gloria. Long-time homogenization and asymptotic ballistic transport of classical waves. Ann. Scientifiques de l’ENS. In press.

[4] J. Bourgain. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158, Princeton University Press, Princeton, 2005.

[5] J. Bourgain. Anderson localization for quasi-periodic lattice Schrödinger operators on d , d arbitrary. Geom. Funct. Anal., 17(3): 682–706, 2007.

[6] J. Bourgain, M. Goldstein, and W. Schlag. Anderson localization for Schrödinger operators on 2 with quasi-periodic potential. Acta Math., 188(1):41–86, 2002.

[7] D. Damanik. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Systems, 37(6):1681–1764, 2017.

[8] M. Duerinckx, A. Gloria, and C. Shirley. Approximate spectral theory and asymptotic ballistic transport of quantum waves. In preparation.

[9] A. Gloria and Z. Habibi. Reduction in the resonance error in numerical homogenizaton II: correctors and extrapolation. Foundations of Computational Mathematics, 16:217–296, 2016.

[10] A. Gloria, S. Neukamm, and F. Otto. A regularity theory for random elliptic operators. Preliminary version, arXiv:1409.2678v3, 2014.

[11] S. Jitomirskaya and C. Marx Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Systems, 37(8):2353–2393, 2017.

[12] Y. Karpeshina and R. Shterenberg. Extended states for the Schrödinger operator with quasi-periodic potential in dimension two. arXiv:1408.5660, 2014.

[13] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

[14] P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), 53(3):343–414, 2016.

[15] S. M. Kozlov. Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.), 107(149)(2):199–217, 317, 1978.

[16] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.

[17] F. Rellich. Perturbation theory of eigenvalue problems. Gordon and Breach Science Publishers, New York-London-Paris, 1969.

Cited by Sources: