In this article we make specific in the quasi-periodic setting the general Floquet-Bloch theory we have introduced for stationary ergodic operators together with the associated approximate spectral theory. As an application we consider the long-time behavior of the Schrödinger flow with a quasi-periodic potential (in the regime of small intensity of the discorder), and the long-time behavior of the wave equation with quasi-periodic coefficients (in the homogenization regime).
DOI: 10.5802/jedp.655
@article{JEDP_2017____A5_0, author = {Benoit, Antoine and Duerinckx, Mitia and Gloria, Antoine and Shirley, Christopher}, title = {Approximate spectral theory and wave propagation in quasi-periodic media}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:5}, pages = {1--12}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2017}, doi = {10.5802/jedp.655}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.655/} }
TY - JOUR AU - Benoit, Antoine AU - Duerinckx, Mitia AU - Gloria, Antoine AU - Shirley, Christopher TI - Approximate spectral theory and wave propagation in quasi-periodic media JO - Journées équations aux dérivées partielles N1 - talk:5 PY - 2017 SP - 1 EP - 12 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.655/ DO - 10.5802/jedp.655 LA - en ID - JEDP_2017____A5_0 ER -
%0 Journal Article %A Benoit, Antoine %A Duerinckx, Mitia %A Gloria, Antoine %A Shirley, Christopher %T Approximate spectral theory and wave propagation in quasi-periodic media %J Journées équations aux dérivées partielles %Z talk:5 %D 2017 %P 1-12 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.655/ %R 10.5802/jedp.655 %G en %F JEDP_2017____A5_0
Benoit, Antoine; Duerinckx, Mitia; Gloria, Antoine; Shirley, Christopher. Approximate spectral theory and wave propagation in quasi-periodic media. Journées équations aux dérivées partielles (2017), Talk no. 5, 12 p. doi : 10.5802/jedp.655. http://www.numdam.org/articles/10.5802/jedp.655/
[1] G. Allaire, M. Briane, and M. Vanninathan. A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. SeMA Journal, pages 1–23, 2016. in press.
[2] J. Asch and A. Knauf. Motion in periodic potentials. Nonlinearity, 11(1):175–200, 1998.
[3] A. Benoit and A. Gloria. Long-time homogenization and asymptotic ballistic transport of classical waves. Ann. Scientifiques de l’ENS. In press.
[4] J. Bourgain. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, 158, Princeton University Press, Princeton, 2005.
[5] J. Bourgain. Anderson localization for quasi-periodic lattice Schrödinger operators on , arbitrary. Geom. Funct. Anal., 17(3): 682–706, 2007.
[6] J. Bourgain, M. Goldstein, and W. Schlag. Anderson localization for Schrödinger operators on with quasi-periodic potential. Acta Math., 188(1):41–86, 2002.
[7] D. Damanik. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam. Systems, 37(6):1681–1764, 2017.
[8] M. Duerinckx, A. Gloria, and C. Shirley. Approximate spectral theory and asymptotic ballistic transport of quantum waves. In preparation.
[9] A. Gloria and Z. Habibi. Reduction in the resonance error in numerical homogenizaton II: correctors and extrapolation. Foundations of Computational Mathematics, 16:217–296, 2016.
[10] A. Gloria, S. Neukamm, and F. Otto. A regularity theory for random elliptic operators. Preliminary version, arXiv:1409.2678v3, 2014.
[11] S. Jitomirskaya and C. Marx Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Systems, 37(8):2353–2393, 2017.
[12] Y. Karpeshina and R. Shterenberg. Extended states for the Schrödinger operator with quasi-periodic potential in dimension two. arXiv:1408.5660, 2014.
[13] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.
[14] P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), 53(3):343–414, 2016.
[15] S. M. Kozlov. Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.), 107(149)(2):199–217, 317, 1978.
[16] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.
[17] F. Rellich. Perturbation theory of eigenvalue problems. Gordon and Breach Science Publishers, New York-London-Paris, 1969.
Cited by Sources: