Derivation of the linear Boltzmann equation without cut-off starting from particles
Journées équations aux dérivées partielles (2017), Talk no. 1, 12 p.

We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford’s strategy. Our proof relies then on a combination of Lanford’s strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated to the long-range interaction, leading to some explicit weak estimates.

Published online:
DOI: 10.5802/jedp.651
Ayi, Nathalie 1

1 Sorbonne Universités UPMC Université Paris 06 UMR 7598 Laboratoire Jacques-Louis Lions F-75005, Paris, France
@article{JEDP_2017____A1_0,
     author = {Ayi, Nathalie},
     title = {Derivation of the linear {Boltzmann} equation without cut-off starting from particles},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:1},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.651},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.651/}
}
TY  - JOUR
AU  - Ayi, Nathalie
TI  - Derivation of the linear Boltzmann equation without cut-off starting from particles
JO  - Journées équations aux dérivées partielles
N1  - talk:1
PY  - 2017
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.651/
DO  - 10.5802/jedp.651
LA  - en
ID  - JEDP_2017____A1_0
ER  - 
%0 Journal Article
%A Ayi, Nathalie
%T Derivation of the linear Boltzmann equation without cut-off starting from particles
%J Journées équations aux dérivées partielles
%Z talk:1
%D 2017
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.651/
%R 10.5802/jedp.651
%G en
%F JEDP_2017____A1_0
Ayi, Nathalie. Derivation of the linear Boltzmann equation without cut-off starting from particles. Journées équations aux dérivées partielles (2017), Talk no. 1, 12 p. doi : 10.5802/jedp.651. http://www.numdam.org/articles/10.5802/jedp.651/

[1] Alexandre, R. Remarks on 3D Boltzmann linear equation without cutoff, Transport Theory and Statistical Physics, Volume 28 (1999) no. 5, pp. 433-473 | DOI

[2] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T. Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff, Communications in Mathematical Physics, Volume 304 (2011) no. 2, pp. 513-581

[3] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T. The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Analysis and Applications, Volume 09 (2011) no. 02, pp. 113-134 http://www.worldscientific.com/doi/abs/10.1142/S0219530511001777 | DOI

[4] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, Journal of Functional Analysis, Volume 262 (2012) no. 3, pp. 915 -1010 http://www.sciencedirect.com/science/article/pii/S0022123611003752 | DOI

[5] Alexandre, R.; Villani, C. On The Boltzmann Equation For Long-Range Interactions, Comm. Pure Appl. Math, Volume 55 (2002), pp. 30-70

[6] Ayi, N. From Newton’s law to the Boltzmann equation without cut-off, Comm. Math. Phys., Volume 350 (2017) no. 3, pp. 1219-1274

[7] Bodineau, T.; Gallagher, I.; Saint-Raymond, L. The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones mathematicae, Volume 203 (2015) no. 2, pp. 493-553 | DOI

[8] Gallagher, I.; Saint-Raymond, L.; Texier, B. From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2013 https://books.google.fr/books?id=K6VCngEACAAJ

[9] Grad, H. Principles of the Kinetic Theory of Gases, Handbuch der Physik, Volume 12 (1958), pp. 205-294 | DOI

[10] Gressman, P. T.; Strain, R. M.; Kadison, R. V. Global classical solutions of the Boltzmann equation with long-range interactions, Proceedings of the National Academy of Sciences of the United States of America, Volume 107 (2010) no. 13, pp. 5744-5749 http://www.jstor.org/stable/25665060

[11] King, F. BBGKY hierarchy for positive potentials, Dept. Mathematics, Univ. California, Berkeley (1975) (Ph. D. Thesis)

[12] Lanford, O. E. Time evolution of large classical systems, Dynamical Systems, Theory and Applications (Moser, J., ed.) (Lecture Notes in Physics), Volume 38, Springer Berlin Heidelberg, 1975, pp. 1-111 | DOI

[13] Lebowitz, J. L.; Spohn, H. Steady state self-diffusion at low density, Journal of Statistical Physics, Volume 29 (1982) no. 1, pp. 39-55 | DOI

[14] Pulvirenti, M.; Saffirio, C.; Simonella, S. On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, Volume 26 (2014) no. 02, 1450001 pages http://www.worldscientific.com/doi/abs/10.1142/S0129055X14500019 | DOI

[15] van Beijeren, H.; Lanford, O. E.; Lebowitz, J. L.; Spohn, H. Equilibrium time correlation functions in the low-density limit, Journal of Statistical Physics, Volume 22 (1980) no. 2, pp. 237-257 | DOI

Cited by Sources: