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Journées Équations aux dérivées partielles
Roscoff, 5–9 juin 2017
GDR 2434 (CNRS)

Derivation of the linear Boltzmann equation
without cut-off starting from particles

Nathalie Ayi

Abstract

We provide a rigorous derivation of the linear Boltzmann equation without cut-off
starting from a system of particles interacting via a potential with infinite range as the
number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty
in our context is that, due to the infinite range of the potential, a non-integrable singularity
appears in the angular collision kernel, making no longer valid the single-use of Lanford’s
strategy. Our proof relies then on a combination of Lanford’s strategy, of tools developed
recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of
new duality arguments to study the additional terms associated to the long-range interaction,
leading to some explicit weak estimates.

1. Physical and historical contexts

In kinetic theory, a gas is described as a physical system constituted of a large number of small
particles. The point of view adopted is a statistical one. The fundamental model is the evolution
equation for the density of particles of a sufficiently rarefied gas first obtained by Boltzmann in
1872. One of its interesting aspects can be found in the fact that Boltzmann’s kinetic equation can
be used as an intermediate step in the transition between atomistic and continuous models for gas
dynamics as it is mentioned in the famous sixth problem of Hilbert. Consequently, the problem of
the derivation of kinetic transport equations from systems of particles is an issue which has been
widely studied in the literature, especially in the context of the Boltzmann equation. The historical
result in this field is due to Lanford [12] in the case of hard-spheres. He proved the convergence
in the low density limit (only for short times). His proof has been recently improved by means of
quantitative estimates by Gallagher, Saint-Raymond and Texier [8] and by Pulvirenti, Saffirio and
Simonella [14] in the case of hard-spheres and short-range potentials. More recently, Bodineau,
Gallagher and Saint-Raymond have been able in [7] to extend this result to any time interval [0, t]
with t � log logN and overcome the difficulty of the short time validity in the particular case of
a fluctuation around equilibrium, thereby enabling to reach a diffusive limit. Note that previous
results without rate concerning the validity in the large of the linear Boltzmann equation were
available (see [15, 13]).

However, so far the question of the convergence in the case of long-range potentials is still open.
Indeed, for a long time Grad’s cut-off assumption, which consists in postulating that the collision
kernel is integrable with respect to the angular variable (see [9]), was crucial to work even at the
level of the kinetic equation. The problem is that, in the case of infinite range forces, whatever
the decay at infinity the huge amount of grazing collisions produces a non integrable singularity in
the “angular collision kernel”. However, recently several breakthroughs have been made regarding
the Cauchy theory for this singular equation inciting us to reconsider this context. Let us mention
the work of Alexandre on the Boltzmann linear equation [1], the results of Alexandre and Villani
about the existence of renormalized solutions with defect measure [5] or more recently the series of
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papers of Alexandre et al [2, 3, 4] and Gressman and Strain [10] in the context of a perturbation
around the equilibrium.

2. The hard spheres case

We start by explaining what tools are usually used to prove those types of results in the hard
spheres case. In the following, we will point out that, because of the singularity in our case, this
method has to be adapted and completed in order to obtain our result.

2.1. Formal derivation
We are interested in describing at the mesoscopic level the behavior of a gas constituted of N
particles. We denote the positions by XN = (x1, . . . , xN ) and the velocities by VN = (v1, . . . , vN ).
We will consider XN in (Rd)N and VN in (Rd)N where Rd is the d-dimensional torus. We denote
ZN := (z1, . . . , zN ) where zi := (xi, vi) for 1 ≤ i ≤ N . With a slight abuse we say that ZN belongs
to RdN ×RdN if XN belongs to RdN and VN to RdN .

The microscopic model is given by : for i ∈ [[1, N ]],
dxi
dt

= vi, xi, vi ∈ Rd

dvi
dt

= 0, |xi(t)− xj(t)| > ε,

and
v′i = vi + ((vj − vi) · ν)ν
v′j = vj − ((vj − vi) · ν)ν

if |xi − xj | = ε.

The Liouville equation satisfied by the N-particle distribution function fN is

∂tfN +
N∑
i=1

vi.∇xi
fN = 0 (2.1)

on DNε := {(x1, v1, . . . , xN , vN ) ∈ R2dN |∀i 6= j, |xi − xj | > ε} with the boundary condition
fN (t, Z in

N ) = fN (t, Zout
N ).

We denote the marginals of order s of fN by f (s)
N (t, Zs) and we define them as follows

f
(s)
N (t, Zs) :=

∫
fN (t, ZN )dzs+1 . . . dzN . (2.2)

Let us take an interest in the first marginal f (1)
N . Applying Green’s formula, we obtain the following

equation :

∂tf
(1)
N (t, Z1) + v1 · ∇x1f

(1)
N (t, Z1) =

(N − 1)εd−1
∫

Sd−1×Rd

[
f

(2)
N (t, x1, v

′
1, x1 + εν, v′2) −f (2)

N (t, x1, v1, x1 − εν, v2)
]

((v2 − v1) · ν)+dνdv2. (2.3)

The low density limit corresponds to a scaling called the Boltzmann-Grad scaling. It satisfies
Nεd−1 = 1. Basically, this corresponds to a situation where the transport and collisions are at the
same level. If we pass to the limit N →∞ in (2.3), we obtain

∂tf(t, Z1) + v1 · ∇x1f(t, Z1) =∫
Sd−1×Rd

[
f (2)(t, x1, v

′
1, x1, v

′
2) −f (2)(t, x1, v1, x1, v2)

]
((v2 − v1) · ν)+dνdv2 (2.4)

Thus, if f (2)(t, Z2) = f(t, z1)f(t, z2) then (2.4) is exactly the Boltzmann equation. Yet, this last
point would mean that the particles 1 and 2 are independent. Of course, for N fixed, if it is true
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at time 0, it won’t be true at time t since the spheres interact. But the idea is to say that it will
actually be true asymptotically in N . This is the key notion of what is called propagation of chaos.

The result obtained is the following and is originally due to Lanford:

Theorem 2.1 ([12, 8]). Consider a system of N particles interacting as hard-spheres of diameter
ε.
Let f0 : R2d → R+ be a continuous density of probability such that

‖f0 exp(β2 |v|
2)‖L∞(Rd

x×Rd
v) < exp(−µ)

for some β > 0, µ ∈ R.
Assume that the N particles are initially identically distributed according to f0 and “independent”
(meaning the correlations vanish asymptotically). Then, there exists some T ∗ > 0 (depending only
on β and µ) such that, in the Boltzmann-Grad limit N →∞, Nεd−1 = 1, the distribution function
of the particles converges uniformly on [0, T ∗]×R2d to the solution of the Boltzmann equation.

2.2. Lanford’s strategy

A general strategy consists in using the Green’s formula to obtain the following system of equations
for s < N which is called the BBGKY hierarchy:

(∂t +
s∑
i=1

vi.∇xi
)f (s)
N (t, Zs) = (C̃s,s+1f

(s+1)
N )(t, Zs) (2.5)

on Dsε with the operator C̃s,s+1 defining the collision term as follows

(C̃s,s+1f
(s+1)
N )(Zs) :=

(N − s)εd−1
s∑
i=1

∫
Sd−1×Rd

f
(s+1)
N (. . . , xi, v∗i , . . . , xi + εν, v∗s+1) ((vs+1 − vi).ν)+ dνdvs+1

−(N − s)εd−1
s∑
i=1

∫
Sd−1×Rd

f
(s+1)
N (. . . , xi, vi, . . . , xi + εν, vs+1) ((vs+1 − vi).ν)− dνdvs+1

(2.6)

where Sd−1 denotes the unit sphere in Rd, and v∗i and v∗s+1 stand for the pre-collisional velocities
for the particles i and s + 1. Mild solutions of the hierarchy can then be defined by Duhamel’s
formula:

f
(s)
N (t) = Ts(t)f (s)

N (0) +
∫ t

0
Ts(t− t1)C̃s,s+1f

(s+1)
N (t1)dt1 (2.7)

where we denote by Ts the group associated with free transport in Dsε with specular reflection
on the boundary. The key point of Lanford’s proof is the iterated Duhamel formula in order to
express solutions of the BBGKY hierarchy in terms of a series of operators applied to the initial
marginals:

f
(s)
N (t) =

N−s∑
n=0

∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ts(t− t1)C̃s,s+1Ts+1(t1 − t2)C̃s+1,s+2 . . . Ts+n(tn)f (s+n)

N (0)

dtn . . . dt1. (2.8)

The Boltzmann series expansion is obtained by taking the formal limit. The asymptotic expression
for the collision operator is given by

(C̃0
s,s+1g

(s+1))(Zs)

:=
s∑
i=1

∫
Sd−1×Rd

g(s+1)(. . . , xi, v∗i , . . . , xi, v∗s+1) ((vs+1 − vi).ν)+ dνdvs+1

−
s∑
i=1

∫
Sd−1×Rd

g(s+1)(. . . , xi, vi, . . . , xi, vs+1) ((vs+1 − vi).ν)− dνdvs+1

(2.9)
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and this leads to the following expression for the Boltzmann series

g(s)(t) =
∑
n≥0

∫ t

0

∫ t1

0
. . .

∫ tn−1

0
T 0
s (t− t1)C̃0

s,s+1T 0
s+1(t1 − t2)C̃0

s+1,s+2 . . . T 0
s+n(tn)g(s+n)(0)

dtn . . . dt1

where we denote by T 0
s the free flow of s particles on R2ds.

Two steps are then necessary to prove Lanford’s result:

- a uniform short time bound for the series expansion associated with the BBGKY hierarchy
and the Boltzmann equation,

- the term by term convergence.

Let us be more precise and introduce the notion of pseudo-trajectory to explain the strategy of
convergence. We introduce the following notation

C̃s,s+1 =
s∑
i=1
C̃+,i
s,s+1 − C̃

−,i
s,s+1

where(
C̃±,is,s+1f

(s+1)
N

)
(Zs) := (N − s)εd−1

∫
Sd−1×Rd

f
(s+1)
N (. . . , xi, v′i, . . . , xi + εν, v′s+1)

((vs+1 − vi).ν)± dνdvs+1

with v′i = v∗i and v′s+1 = v∗s+1 for C̃+,i
s,s+1 and v′i = vi and v′s+1 = vs+1 for C̃−,is,s+1. We can do the

same for C̃0
s,s+1.

Definition 2.2. We call elementary terms in the series the following elements∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ts(t− t1)C̃j1,m1

s,s+1Ts+1(t1 − t2)C̃j2,m2
s+1,s+2 . . . Ts+n(tn)f (s+n)

N (0)dtn . . . dt1

with (j1, j2, . . . , jn) ∈ {+,−} and mi ∈ {1, 2, . . . , s+ i− 1}.

Each elementary term has a geometric interpretation as an integral over some pseudo-trajectory.

Definition 2.3. We call pseudo-trajectory associated with the BBGKY hierarchy and the ele-
mentary term∫ t

0

∫ t1

0
. . .

∫ tn−1

0
Ts(t− t1)C̃j1,m1

s,s+1Ts+1(t1 − t2)C̃j2,m2
s+1,s+2 . . . Ts+n(tn)f (s+n)

N (0)dtn . . . dt1

the following description of the evolution of the positions and the velocities:

• We start at time t with s particles with the configuration Zs ∈ Rds ×Rds. We denote by
Ψ̂s the backward s-particle flow. For u ∈ [t1, t], Zs(u) := Ψ̂s(u)Zs.

• The first collision operator C̃j1,m1
s,s+1 is interpreted as the adjunction at time t1 of a new particle

at xm1(t1) + ενs+1 for a deflection angle νs+1 ∈ Sd−1 and a velocity vs+1 ∈ Rd, provided
that there is no overlap. Depending on the sign of j1, it means that the particle is added
in incoming (j1 = −) or outgoing (j1 = +) collision configuration. In that last case, the
particles will follow a backward scattering as it can be seen in the next item.

• Then Zs+1 evolves according to the backward s + 1-particles flow Ψ̂s+1 during the time
interval [t2, t1] starting at t1 from

Zs+1(t1) = ({zj(t1)}j 6=m1 , (xm1(t1), vm1(t1)), (xm1(t1) + ενs+1, vs+1)) if j1 = −
=

(
{zj(t1)}j 6=m1 , (xm1(t1), v∗m1

(t1)), (xm1(t1) + ενs+1, v
∗
s+1)

)
if j1 = +.
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• We iterate this procedure by adding a particle labeled s+ i at time ti at xmi
(ti) + ενs+i for

a deflection angle νs+i ∈ Sd−1 and a velocity vs+i ∈ Rd, provided that there is no overlap.
The evolution of Zs+i follows the flow of the backward s+ i-particles flow Ψ̂s+i during the
time interval [ti+1, ti] starting at ti from

Zs+i(ti) = ({zj(ti)}j 6=mi
, (xmi

(ti), vmi
(ti)), (xmi

(ti) + ενs+i, vs+i)) if ji = −
=

(
{zj(ti)}j 6=mi , (xmi(ti), v∗mi

(ti)), (xmi(ti) + ενs+i, v
∗
s+i)

)
if ji = +.

The elementary term can then be rewritten as follows

ε(d−1)n(N − s)(N − s− 1) . . . (N − s− n+ 1)
∫ t

0

∫ t1

0
. . .

∫ tn−1

0
dtn . . . dt1∫

(Sd−1×Rd)n

dνs+1 . . . νs+ndvs+1 . . . dvs+n1{no overlap}
n∏
i=1

((vs+i − vmi(ti)).νs+i) f0(s+n)
N (Zs+n(0))

where Zs+n(0) is the pseudo-trajectory at time 0.

p
t

p
t1

p
t20

v1

v2

v3

Figure 1. Representation of a pseudo-trajectory associated with the term∫ t

0

∫ t1

0
T1(t− t1)C1,2T2(t1 − t2)C2,3T3(t2)f (3)

N (0)dt2dt1 for the BBGKY hierar-
chy.

We then give the definition of the two notions of collision and recollision.

Definition 2.4. We call a collision the creation of a particle in the process described above and
a recollision the event when two particles collide in the flow Ψ̂s+i, with 0 ≤ i ≤ N − s.

Note that the pseudo-trajectories do not involve physical particles but are a geometric interpre-
tation of the iterated Duhamel formula in terms of a branching process flowing backward in time
and determined by

- the collision times T := (t1, . . . , tn) which are interpreted as branching times,

- the labels of the particles involved in the collisionsm := (m1, . . . ,mn) from which branching
occurs and such that 1 ≤ mi ≤ s+ i− 1 for all i,

- the coordinate of the initial particles Zs at time t,

- the velocities vs+1, . . . , vs+n in Rd and deflection angles νs+1, . . . , νs+i ∈ Sd−1 for each
additional particle.
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Definition 2.5. We call pseudo-trajectory associated with the Boltzmann hierarchy and the ele-
mentary term∫ t

0

∫ t1

0
. . .

∫ tn−1

0
T 0
s (t− t1)C̃0,j1,m1

s,s+1 T 0
s+1(t1 − t2)C̃0,j2,m2

s+1,s+2 . . . T 0
s+n(tn)f (s+n)

N (0)dtn . . . dt1

the following description of the evolution of the positions and the velocities:

we start at time t with s particles with the configuration Z0
s ∈ Rds ×Rds. The (s+ k)th particle

is added at x0
mk

(tk) with a velocity vs+k ∈ Rd. Then Z0
s+k evolves according to the backward free

flow denoted by Ψ̂0
s+k during the time interval [tk+1, tk] until the next creation, starting from

Z0
s+k(tk) =

(
{z0
j (tk)}j 6=mk

, (x0
mk

(tk), vmk
(tk)), (x0

mk
(tk), vs+k)

)
if jk = −

=
(
{z0
j (tk)}j 6=mk

, (x0
mk

(t+k ), v∗mk
(t+k )), (x0

mk
(t+k ), v∗s+k)

)
if jk = +. (2.10)

The elementary term can then be rewritten as follows∫ t

0

∫ t1

0
. . .

∫ tn−1

0
dtn . . . dt1∫

(Sd−1×Rd)n

dνs+1 . . . νs+ndvs+1 . . . dvs+n

n∏
i=1

((vs+i − vmi
(ti)).νs+i) g0(s+n)(Z0

s+n(0)) (2.11)

where Z0
s+n(0) is the Boltzmann pseudo-trajectory at time 0.

Remark 2.1. (i) The notion of collision is defined similarly as previously as the creation of
a particle in the above process. Nevertheless, in the case of the pseudo-trajectory associ-
ated with the Boltzmann hierarchy, the particles are points and no recollision occurs in the
branching process.

(ii) We stress that, at time t, Zs = Z0
s .

p
t

p
t∗

p
t1

p
t20

v1

v2

v3

Figure 2. An example of a recollision between particles 1 and 2 at time t∗.

The key point to prove the convergence is actually to prove that the pseudo-trajectories associated
with both series can be coupled precisely. Indeed, the differences between the BBGKY series and
the Boltzmann series are the prefactors (N − s)εd−1, the micro-translation xi + εν when a particle
is created in the BBGKY pseudo-trajectory and most importantly the absence of recollisions in
the case of the Boltzmann pseudo-trajectories. The two first points are easily dealt with by passing
to the limit. The main concern of the proof is then to deal with the third one and prove that
outside a geometrical ensemble of vanishing measure, no recollision occurs either for the BBGKY
pseudo-trajectories.
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2.3. Discussion of Lanford’s result

Unfortunately, this result is actually only valid for short times. Indeed, it is due to the fact that, in
Lanford’s strategy, the bounds for the series are obtained by ignoring the compensation between
gain and loss terms. As mentionned in the previous section, this difficulty is overcome by adopting
a linear setting when considering a tagged particle in a gas at equilibrium, see [15, 13] and more
recently [7]. The key point of this last proof is to exploit the maximum principle and establish
global uniform a priori bounds for the distribution of particles, and more generally for all finite
order marginals of the N -particle distribution.

Let us go back to the long-range interaction case. The issue is the following, no matter how de-
creasing the potential is taken, a non-integrable singularity in the angular collision kernel appears
due to the huge amount of grazing collisions. By grazing collisions, we mean collisions with a very
large impact parameter, the impact parameter being the distance of closest approach if the two
particles move freely (so concretely, grazing collisions involve colliding particles which are barely
deviated).

So the strategy consisting in ignoring the cancellations between the gain and the loss terms no
longer works, even for a short time. Indeed, separating the gain and the loss terms no longer makes
sense since the two integrals diverge in∫ ∫

Sd−1×Rd

f(v∗)f(v∗1)b(v − v∗1 , ν)dv1dν −
∫ ∫

Sd−1×Rd

f(v)f(v1)b(v − v1, ν)dv1dν

So, the key point will be to adopt the linear setting mentioned above and especially to separate
the contribution of the long-range interaction from the one of the “moderate-range” interaction by
introducing a truncation parameter R. The “moderate-range” interaction part should be treated
using exactly the same strategy as the one explained above in the hard-spheres case introducing
some fictitious boundary at distance Rε (see [11]). The long-range interaction part should be
treated as an additional remainder term which will vanish in the limit provided that R goes to ∞.
The main difficulty in that last term (which does not appear in the case of a short-range potential)
is due to the presence of derivatives acting on the marginals. The strategy will be not to iterate
on terms involving derivatives and to adopt a weak approach making the derivatives act on test
functions. It is actually the core of our proof to develop new duality arguments to study those
additional terms and then establish some weak estimates.

3. The case of an infinite range potential

3.1. Statement of the result

We are interested in a potential which satisifies the following assumption :

Assumption 3.1.1. Φ : Rd\{0} → R∗+ is a radial, nonnegative, nonincreasing function which
goes to zero at infinity and presents a singularity in 0. Moreover, ∇Φ is a Lipschitz function with
fast decay.

The framework is the following: we examine a small perturbation around the equilibrium of a
fixed number of particles. For the sake of simplicity, we initially perturb only one particle (which
will be labeled by 1) with respect to the position x1 of the tagged particle. In order to do so, we
consider initial data of the form

f0
N (ZN ) := MN,β(ZN )ρ0(x1) (3.1)

where ρ0 is a continuous density of probability on Td and MN,β is the Gibbs measure defined as
follows: for β > 0 given,

MN,β(ZN ) := 1
ZN

(
β

2π

)dN/2
exp(−βHN (ZN )) (3.2)
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with HN (ZN ) :=
∑

1≤i≤N

1
2 |vi|

2 +
∑

1≤i<j≤N
Φ(xi − xj

ε
) and

ZN :=
∫

TdN×RdN

(
β

2π

)dN/2
exp(−βHN (ZN ))dZN . (3.3)

Theorem 3.1 ([6]). We consider the initial distribution f0
N defined in (3.1) describing the state

of a tagged particle in a background of N − 1 particles at equilibrium. Under Assumptions 3.1.1
on the potential, for t > 0 an arbitrary time, the distribution f

(1)
N (t, x, v) of the tagged particle

converges in D′(Td × Rd) when N goes to ∞ under the Boltzmann-Grad scaling Nεd−1 = 1 to
Mβ(v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off

∂th+ v.∇xh = −
∫ ∫

[h(v)− h(v∗)]Mβ(v1)b(v − v1, ν)dv1dν (3.4)

with initial data ρ0(x1) and where Mβ(v) :=
(
β

2π

)d/2
exp

(
−β2 |v|

2
)
, β > 0. The cross-section b

has a non-integrable singularity depending implicitly on Φ.

3.2. Ideas of the proof
Due to the presence of the long-range potential, we artificially truncate the potential by considering
truncated marginals f̃ (s)

N,R defined as follows

f̃
(s)
N,R(t, Zs) :=

∫
Td(N−s)×Rd(N−s)

fN (t, Zs, zs+1, . . . , zN )
∏

1≤i≤s
s+1≤j≤N

1{|xi−xj |>Rε}dZ(s+1,N) (3.5)

where dZ(s+1,N) := dzs+1dzs+2 . . . dzN .

We consider ΛR a smooth function such that

ΛR(x) =
{

1 if |x| > R
0 if |x| < R− 1.

We will denote Φ>(x) := Φ(x)ΛR(x) and Φ<(x) := Φ(x)(1− ΛR(x)).

Applying Green’s formula in a similar way as in [8], we obtain the following BBGKY hierarchy

∂tf̃
(s)
N,R +

s∑
i=1

vi.∇xi f̃
(s)
N,R −

1
ε

s∑
i,j=1
i 6=j

∇Φ<(xi − xj
ε

).∇vi f̃
(s)
N,R

= 1
ε

s∑
i,j=1
i 6=j

∇Φ>(xi − xj
ε

).∇vi
f̃

(s)
N,R

+ (N − s)
ε

s∑
i=1

∫
Td(N−s)×Rd(N−s)

∇Φ(xi − xs+1

ε
).∇vifN (t, ZN )∏

1≤l≤s
s+1≤k≤N

1{|xl−xk|>Rε}dZ(s+1,N)

+ Cs,s+1f̃
(s+1)
N,R + Cs,s+1f

(s+1)
N,R , (3.6)

where for gs+1 : Td(s+1) ×Rd(s+1) → R

Cs,s+1gs+1(Zs) = (N − s)
s∑
i=1

∫
SRε(xi)×Rd

 s∏
j=1
j 6=i

1|xj−xs+1|>Rε

 νs+1,i.(vs+1 − vi)

gs+1(Zs+1)dσi(xs+1)dvs+1 (3.7)
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with νs+1,i = xs+1 − xi
|xs+1 − xi|

, dσi is the surface measure on SRε := {x ∈ Td, |x− xi| = Rε} and

f
(s+1)
N,R (t, Zs+1) :=

∫
Td(N−(s+1))×Rd(N−(s+1))

fN (t, ZN ) ∏
1≤k≤s

s+2≤l≤N

1|xk−xl|>Rε


1−

N∏
j=s+2

1|xj−xs+1|>Rε

 dZ(s+2,N). (3.8)

We denote by H<
s the s-particle Hamiltonian defined as follows

H<
s (Zs) :=

∑
1≤i≤s

1
2 |vi|

2 +
∑

1≤i<j≤s
Φ<
(
xi − xj

ε

)
and we notice that H<

s depends on ε and R.
Mild solutions of the BBGKY hierarchy are thus defined by Duhamel’s formula

f̃
(s)
N,R(t, Zs) = Ss(t)f̃ (s)

N,R(0, Zs)

+1
ε

s∑
i,j=1
i 6=j

∫ t

0
Ss(t− t1)

[
∇Φ>(xi − xj

ε
).∇vi

f̃
(s)
N,R

]
(t1, Zs)dt1

+(N − s)
ε

s∑
i=1

∫ t

0
Ss(t− t1)

[∫
Td(N−s)×Rd(N−s)

∇Φ(xi − xs+1

ε
).∇vi

fN

∏
1≤l≤s

s+1≤k≤N

1{|xl−xk|>Rε}dZ(s+1,N)

 (t1, Zs)dt1

+
∫ t

0
Ss(t− t1)Cs,s+1f̃

(s+1)
N,R (t1, Zs)dt1

+
∫ t

0
Ss(t− t1)Cs,s+1f

(s+1)
N,R (t1, Zs)dt1

(3.9)

denoting by Ss the group associated with the solution operator
Ss(t) : f ∈ C0(Tds ×Rds; R) 7→ f(Ψs(−t, .)) ∈ C0(Tds ×Rds; R) (3.10)

where Ψs(t) is the s-particle Hamiltonian flow associated with H<
s . We notice that Ss depends on

ε and R.

Before explaining the iteration strategy, let us point out four possible obstacles to the convergence:

- the very long-range interactions,

- clusters (or multiple simultaneous interactions),

- the presence of recollisions,

- a super-exponential collision process.

The strategy will be to iterate Duhamel’s formula on a term where none of those four situations
happens. The other terms where at least one of those four situations happen will give remainders
and we will prove that they vanish in the limit.

Let us go back to (3.9). It seems then obvious that we will not iterate the Duhamel formula on
the second and third terms of the right-hand side or the last one because they respectively are
associated with the long-range interaction part and clusters. Moreover, two of them involve v-
derivatives. So those terms will create remainders. The idea will be then to split the fourth term
into two terms with one where no recollision happens. Finally on this recollision free term, we will
iterate the Duhamel formula. Then, we will proceed as above to choose among the new terms the
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one involving no long-range interaction, no clusters and being recollision free in which we will again
apply the Duhamel formula and so on. We will iterate this procedure a controlled number of times
obtaining a term in which one the number of collision is not super exponential and a remainder
where it is super exponential.

In order to establish the result, we then have to prove that the main term converges to the
one associated with the Boltzmann equation and that the remainders vanish. Let us focus on the
remainder associated with the long range part since the other ones will be handled quite similarly
to the previous papers.
First, we point out that our iteration strategy is different from the ones developed in the previous
papers. Indeed, we choose to do the truncations at each iteration step instead of doing them once
all the iterations are done. This choice is linked to our framework. By adopting this method, we
can actually handle the remainders associated with the long-range part. They have the following
forms :

rPot,as,m+1(0, t, Zs)

:=
m∑
n=0

∫ t−nδ

0
Qs,s+n(t− tn+1)1

ε

s+n∑
i,j=1
i 6=j

[
∇Φ>(xi − xj

ε
).∇vi

f̃
(s+n)
N,R

]
(tn+1, Zs)dtn+1

and

rPot,bs,m+1(0, t, Zs) :=
m∑
n=0

∫ t−nδ

0
Qs,s+n(t− tn+1)

(N − (s+ n))
ε

s+n∑
i=1

[∫
Td(N−(s+n))×Rd(N−(s+n))

∇Φ(xi − xs+n+1

ε
).∇vi

fN

∏
1≤l≤s+n

s+n+1≤k≤N

1{|xl−xk|>Rε}dZ(s+n,N)

 (tn+1, Zs)dtn+1.

with
Qs,s(t) := Ss(t)

and

Qs,s+n(t) :=
∫ t−δ

0

∫ t1−δ

0
. . .

∫ tn−1−δ

0
Ss(t− t1)Cs,s+1χHs+1

(
1− χgeom(s+1)

)
χηs+1 . . .

. . .Ss+n−1(tn−1 − tn)Cs+n−1,s+nχHs+n

(
1− χgeom(s+n)

)
χηs+n

Ss+n(tn)dtn . . . dt1.
Because of our strategy, on those terms we know that there is no pathological situations. Indeed,
the indicator functions appearing in the operators Qs,s+n(t) prevent this. Thus, it is easy to to
pass from Zm(tm) to z (state of particle 1 at time t) via changes of variables such as

Td ×Rd × [0, t− δ]× Sd−1 ×Rd × · · · × [0, tm−1 − δ]× Sd−1 ×Rd → T(m+1)d ×R(m+1)d

(z, t1, ν2, v2, . . . , tm, νm+1, vm+1) 7→ Z̃m+1 = Zm+1(tm).

Actually, because of Assumption (3.1.1), we can say more: z is a Lipschitz function of (x̃1, ṽ1, . . . ,
x̃m+1, ṽm+1). We can prove it studying the reduced dynamics and using Cauchy-Lipschitz theorem
(see [6] for more details). Because of that Lipschitz control associated with the pseudo-trajectories,
with some a priori estimates on the truncated marginals, we can obtain a bound of the remain-
ders associated with the long-range part which is controlled by parameters associated with other
remainders. We can finally prove that those remainders vanish when passing to the limit.

3.3. Discussion of the result
Our result is for very decreasing potentials and is far from being reached for potentials like inverse
power laws for instance. It is purely technical and due to the strategy of Lanford. Indeed, in order
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to make the other remainders disappear, some parameters have to be taken at a certain order.
Yet, they appear in the bound of the remainder associated with the long-range part. In order to
make this one converge to 0 with the orders appearing, we have to consider extremely decreasing
potential. It seems that we can not hope to do much better by this approach and another method
should be developed to handle more reasonable potential.
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