Asymptotic behaviour of the Landau equation with Coulomb potential
Journées équations aux dérivées partielles (2016), Talk no. 4, 13 p.

This is the written version of a talk given at the Journées Équations aux Dérivées Partielles 2016 at Roscoff. We present in this note recent results on the asymptotic behaviour of the Landau equation with Coulomb potential, in both spatially homogeneous and inhomogeneous cases. These results have been obtained in joint works with L. Desvillettes and L. He in [6], and with S. Mischler in [7].

Published online:
DOI: 10.5802/jedp.645
Carrapatoso, Kleber 1

1 IMAG, UMR CNRS 5149 Université de Montpellier 34095 Montpellier France
@article{JEDP_2016____A4_0,
     author = {Carrapatoso, Kleber},
     title = {Asymptotic behaviour of the {Landau} equation  with {Coulomb} potential},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:4},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2016},
     doi = {10.5802/jedp.645},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.645/}
}
TY  - JOUR
AU  - Carrapatoso, Kleber
TI  - Asymptotic behaviour of the Landau equation  with Coulomb potential
JO  - Journées équations aux dérivées partielles
N1  - talk:4
PY  - 2016
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.645/
DO  - 10.5802/jedp.645
LA  - en
ID  - JEDP_2016____A4_0
ER  - 
%0 Journal Article
%A Carrapatoso, Kleber
%T Asymptotic behaviour of the Landau equation  with Coulomb potential
%J Journées équations aux dérivées partielles
%Z talk:4
%D 2016
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.645/
%R 10.5802/jedp.645
%G en
%F JEDP_2016____A4_0
Carrapatoso, Kleber. Asymptotic behaviour of the Landau equation  with Coulomb potential. Journées équations aux dérivées partielles (2016), Talk no. 4, 13 p. doi : 10.5802/jedp.645. http://www.numdam.org/articles/10.5802/jedp.645/

[1] Alexandre, R.; Villani, C. On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 21 (2004) no. 1, pp. 61-95

[2] Arsenʼev, A. A.; Peskov, N. V. The existence of a generalized solution of Landau’s equation, Ž. Vyčisl. Mat. i Mat. Fiz., Volume 17 (1977) no. 4, p. 1063-1068, 1096 | MR

[3] Baranger, C.; Mouhot, C. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, Volume 21 (2005) no. 3, pp. 819-841 | DOI | MR

[4] Carrapatoso, K. Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., Volume 139 (2015) no. 7, pp. 777-805

[5] Carrapatoso, K. On the rate of convergence to equilibrium for the homogeneous Landau equation with soft potentials, J. Math. Pures Appl., Volume 104 (2015) no. 2, pp. 276-310

[6] Carrapatoso, K.; Desvillettes, L.; He, L. Estimates for the large time behavior of the Landau equation in the Coulomb case (https://arxiv.org/abs/1510.08704, to appear in Arch. Rational Mech. Anal.)

[7] Carrapatoso, K.; Mischler, S. Landau equation for very soft and Coulomb potentials near Maxwellians (https://arxiv.org/abs/1512.01638, to appear in Ann. PDE)

[8] Carrapatoso, K.; Tristani, I.; Wu, K.-C. Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Rational Mech. Anal., Volume 221 (2016) no. 1, pp. 363-418 | DOI

[9] Cercignani, C. H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), Volume 34 (1982), p. 231-241 (1983)

[10] Csiszar, I. Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., Volume 2 (1967), pp. 299-318

[11] Degond, P.; Lemou, M. Dispersion relations for the linearized Fokker-Planck equation, Arch. Ration. Mech. Anal., Volume 138 (1997), pp. 137-167

[12] Desvillettes, L. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., Volume 269 (2015) no. 5, pp. 1359-1403 https://dx-doi-org.proxy.bu.dauphine.fr/10.1016/j.jfa.2015.05.009 | DOI | MR

[13] Desvillettes, L.; Mouhot, C.; Villani, C. Celebrating Cercignani’s conjecture for the Boltzmann equation, Kinet. Relat. Models, Volume 4 (2011), pp. 277-294

[14] Desvillettes, L.; Villani, C. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications, Commun. Partial Differential Equations, Volume 25 (2000) no. 1-2, pp. 261-298

[15] Desvillettes, L.; Villani, C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., Volume 159 (2005) no. 2, pp. 245-316 | DOI | MR

[16] DiPerna, R. J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2), Volume 130 (1989) no. 2, pp. 321-366 | DOI | MR

[17] Fournier, N. Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential, Comm. Math. Phys., Volume 299 (2010) no. 3, pp. 765-782 https://dx-doi-org.proxy.bu.dauphine.fr/10.1007/s00220-010-1113-9 | DOI | MR

[18] Gualdani, M.; Mischler, S.; Mouhot, C. Factorization for non-symmetric operators and exponential H-Theorem (https://arxiv.org/abs/1006.5523)

[19] Guo, Y. The Landau equation in a periodic box, Comm. Math. Phys., Volume 231 (2002), pp. 391-434

[20] Kullback, S. A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. The., Volume 4 (1967), pp. 126-127

[21] Mouhot, C. Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Part. Diff Equations, Volume 261 (2006), pp. 1321-1348

[22] Mouhot, C. Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., Volume 261 (2006), pp. 629-672

[23] Mouhot, C.; Neumann, L. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006) no. 4, pp. 969-998 | DOI | MR

[24] Mouhot, C.; Strain, R. Spectral gap and coercivity estimates for the linearized Boltzmann collision operator without angular cutoff, J. Math. Pures Appl., Volume 87 (2007), pp. 515-535

[25] Strain, R. M.; Guo, Y. Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, Volume 31 (2006) no. 1-3, pp. 417-429 | DOI | MR

[26] Strain, R. M.; Guo, Y. Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 2, pp. 287-339 | DOI | MR

[27] Toscani, G.; Villani, C. On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys., Volume 98 (2000) no. 5-6, pp. 1279-1309 | DOI | MR

[28] Villani, C. On the Cauchy problem for Landau equation: sequential stability, global existence, Adv. Differential Equations, Volume 1 (1996) no. 5, pp. 793-816 | MR

[29] Villani, C. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., Volume 143 (1998) no. 3, pp. 273-307 | MR

Cited by Sources: