This article is devoted to the semiclassical analysis of the magnetic Laplacian on a smooth domain of the plane carrying Neumann boundary conditions. We provide WKB expansions of the eigenfunctions when Neumann boundary traps the lowest eigenfunctions near the points of maximal curvature. We also explain and illustrate a conjecture of magnetic tunneling when the domain is an ellipse.
@article{JEDP_2016____A3_0, author = {Bonnaillie-No\"el, Virginie and H\'erau, Fr\'ed\'eric and Raymond, Nicolas}, title = {Curvature induced magnetic bound states: towards the tunneling effect for the ellipse}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:3}, pages = {1--14}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2016}, doi = {10.5802/jedp.644}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.644/} }
TY - JOUR AU - Bonnaillie-Noël, Virginie AU - Hérau, Frédéric AU - Raymond, Nicolas TI - Curvature induced magnetic bound states: towards the tunneling effect for the ellipse JO - Journées équations aux dérivées partielles N1 - talk:3 PY - 2016 SP - 1 EP - 14 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.644/ DO - 10.5802/jedp.644 LA - en ID - JEDP_2016____A3_0 ER -
%0 Journal Article %A Bonnaillie-Noël, Virginie %A Hérau, Frédéric %A Raymond, Nicolas %T Curvature induced magnetic bound states: towards the tunneling effect for the ellipse %J Journées équations aux dérivées partielles %Z talk:3 %D 2016 %P 1-14 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.644/ %R 10.5802/jedp.644 %G en %F JEDP_2016____A3_0
Bonnaillie-Noël, Virginie; Hérau, Frédéric; Raymond, Nicolas. Curvature induced magnetic bound states: towards the tunneling effect for the ellipse. Journées équations aux dérivées partielles (2016), Talk no. 3, 14 p. doi : 10.5802/jedp.644. http://www.numdam.org/articles/10.5802/jedp.644/
[1] Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1272-1284 | DOI | MR
[2] Harmonic oscillators with Neumann condition of the half-line, Commun. Pure Appl. Anal., Volume 11 (2012) no. 6, pp. 2221-2237 | DOI | MR
[3] Magnetic WKB constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI | MR
[4] Semiclassical tunneling and magnetic flux effects on the circle, J. Spectr. Theory (2017), to appear pages
[5] Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators, J. Differential Equations, Volume 104 (1993) no. 2, pp. 243-262 | DOI | MR
[6] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999, xii+227 pages | DOI | MR
[7] Semiclassical analysis with vanishing magnetic fields, J. Spectr. Theory, Volume 3 (2013) no. 3, pp. 423-464 | MR
[8] Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 http://aif.cedram.org/item?id=AIF_2006__56_1_1_0 | MR
[9] Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, xx+324 pages | MR
[10] Tunneling for the Robin Laplacian in smooth planar domains, To appear in Commun. Contempt. Math. (arXiv:1509.03986) (2016)
[11] Semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator: the case of discrete wells, Spectral theory and geometric analysis (Contemp. Math.), Volume 535, Amer. Math. Soc., Providence, RI, 2011, pp. 55-78 | DOI | MR
[12] Accurate semiclassical spectral asymptotics for a two-dimensional magnetic Schrödinger operator, Ann. Henri Poincaré, Volume 16 (2015) no. 7, pp. 1651-1688 | DOI | MR
[13] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR
[14] Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations, Volume 9 (1984) no. 4, pp. 337-408 | DOI | MR
[15] Mélina, bibliothèque de calculs éléments finis., http://anum-maths.univ-rennes1.fr/melina (2010)
[16] Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique, J. Funct. Anal., Volume 72 (1987) no. 1, pp. 65-93 | DOI | MR
[17] From the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical limit, Anal. PDE, Volume 6 (2013) no. 6, pp. 1289-1326 | DOI | MR
[18] Bound states of the Magnetic Schrödinger Operator, EMS Tracts in Mathematics, 27, European Mathematical Society, 2017
[19] Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble), Volume 65 (2015) no. 1, pp. 137-169 http://aif.cedram.org/item?id=AIF_2015__65_1_137_0 | MR
Cited by Sources: