@article{JEDP_2008____A2_0, author = {G\'erard-Varet, David}, title = {Quelques probl\`emes d{\textquoteright}irr\'egularit\'e dans l{\textquoteright}interaction fluide-solide}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--19}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2008}, doi = {10.5802/jedp.46}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.46/} }
TY - JOUR AU - Gérard-Varet, David TI - Quelques problèmes d’irrégularité dans l’interaction fluide-solide JO - Journées équations aux dérivées partielles PY - 2008 SP - 1 EP - 19 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.46/ DO - 10.5802/jedp.46 LA - en ID - JEDP_2008____A2_0 ER -
%0 Journal Article %A Gérard-Varet, David %T Quelques problèmes d’irrégularité dans l’interaction fluide-solide %J Journées équations aux dérivées partielles %D 2008 %P 1-19 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.46/ %R 10.5802/jedp.46 %G en %F JEDP_2008____A2_0
Gérard-Varet, David. Quelques problèmes d’irrégularité dans l’interaction fluide-solide. Journées équations aux dérivées partielles (2008), article no. 2, 19 p. doi : 10.5802/jedp.46. http://www.numdam.org/articles/10.5802/jedp.46/
[1] Wall laws for fluid flows at a boundary with random roughness, Comm. Pure Appl. Math., Volume 61 (2008) no. 7, pp. 941-987 | MR | Zbl
[2] Why viscous fluids adhere to rugose walls: a mathematical explanation, J. Differential Equations, Volume 189 (2003) no. 2, pp. 526-537 | MR | Zbl
[3] Solid-solid contacts due to surface roughness and their effects on suspension behaviour, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., Volume 361 (2003) no. 1806, pp. 871-894 | MR | Zbl
[4] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., Volume 146 (1999) no. 1, pp. 59-71 | MR | Zbl
[5] An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, Springer Tracts in Natural Philosophy, 39, Springer-Verlag, New York, 1994 (Nonlinear steady problems) | MR | Zbl
[6] The Navier wall law at a boundary with random roughness (2008) (To appear in Comm. Math. Physics) | MR | Zbl
[7] Regularity issues in the problem of fluid-structure interaction (2008) (Preprint)
[8] Relevance of the slip condition for fluid flows near an irregular boundary (2008) (Preprint)
[9] Low Reynolds number hydrodynamics with special applications to particulate media, Prentice-Hall Inc., Englewood Cliffs, N.J., 1965 | MR
[10] Lack of collision between solid bodies in a 2D incompressible viscous flow, Comm. Partial Differential Equations, Volume 32 (2007) no. 7-9, pp. 1345-1371 | MR
[11] Determination of solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 96 (1980), p. 117-160, 308 (Boundary value problems of mathematical physics and related questions in the theory of functions, 12) | MR | Zbl
[12] Fluid Particle simulation with FREEFEM++, Esaim Proceedings, Volume 18 (2007), pp. 120-132 | MR
[13] From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Comm. Pure Appl. Math., Volume 56 (2003) no. 9, pp. 1263-1293 | MR | Zbl
[14] A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, Numer. Math., Volume 102 (2006) no. 4, pp. 649-679 | MR | Zbl
[15] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., Volume 161 (2002) no. 2, pp. 113-147 | MR | Zbl
[16] Chute libre d’un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., Volume 4 (1987) no. 1, pp. 99-110 | MR | Zbl
[17] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, Volume 8 (2003) no. 12, pp. 1499-1532 | MR | Zbl
[18] Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries, Phys. Fluids, Volume 19 (2007), pp. 123601 | Zbl
Cited by Sources: