Complex analysis and geometry
On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities
Comptes Rendus. Mathématique, Volume 360 (2022) no. G5, pp. 539-547.

Let (V,0)( n ,0) be a quasi-homogeneous isolated hypersurface singularity. In this paper we prove under certain weight conditions a relation between the property of (V,0) being of Thom–Sebastiani type and the dimension of toral Lie subalgebras contained in the Yau algebra L(V).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.324
Classification: 32S25
Epure, Raul 1

1 Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern, Germany
@article{CRMATH_2022__360_G5_539_0,
     author = {Epure, Raul},
     title = {On the {Thom{\textendash}Sebastiani} {Property} of {Quasi-Homogeneous} {Isolated} {Hypersurface} {Singularities}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {539--547},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G5},
     year = {2022},
     doi = {10.5802/crmath.324},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.324/}
}
TY  - JOUR
AU  - Epure, Raul
TI  - On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 539
EP  - 547
VL  - 360
IS  - G5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.324/
DO  - 10.5802/crmath.324
LA  - en
ID  - CRMATH_2022__360_G5_539_0
ER  - 
%0 Journal Article
%A Epure, Raul
%T On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities
%J Comptes Rendus. Mathématique
%D 2022
%P 539-547
%V 360
%N G5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.324/
%R 10.5802/crmath.324
%G en
%F CRMATH_2022__360_G5_539_0
Epure, Raul. On the Thom–Sebastiani Property of Quasi-Homogeneous Isolated Hypersurface Singularities. Comptes Rendus. Mathématique, Volume 360 (2022) no. G5, pp. 539-547. doi : 10.5802/crmath.324. http://www.numdam.org/articles/10.5802/crmath.324/

[1] Chen, Bingyi; Hussain, Naveed; Yau, Stephen S.-T.; Zuo, Huaiqing Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities, J. Differ. Geom., Volume 115 (2020) no. 3, pp. 437-473 | DOI | MR | Zbl

[2] Decker, Wolfram; Greuel, Gert-Martin; Pfister, Gerhard; Schönemann, Hans Singular 4-2-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2021

[3] Epure, Raul-Paul Explicit and effective Mather–Yau correspondence in view of analytic gradings, doctoralthesis, Technische Universität Kaiserslautern (2020), II, 170, V pages http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-61500

[4] Epure, Raul-Paul; Schulze, Mathias Hypersurface singularities with monomial Jacobian ideal, Bull. Lond. Math. Soc. (2022) (https://doi.org/10.1112/blms.12614) | DOI

[5] Hauser, Herwig; Müller, Gerd On the Lie algebra Θ (X) of vector fields on a singularity, J. Math. Sci., Tokyo, Volume 1 (1994), pp. 239-250 | MR | Zbl

[6] Humphreys, James E. Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer, 1975, xiv+247 pages | MR

[7] Hussain, Naveed; Yau, Stephen S.-T.; Zuo, Huaiqing On the new k-th Yau algebras of isolated hypersurface singularities, Math. Z., Volume 294 (2020), pp. 1-28 | DOI | MR | Zbl

[8] Hussain, Naveed; Yau, Stephen S.-T.; Zuo, Huaiqing k-th Yau number of isolated hypersurface singularities and An Inequality Conjecture, J. Aust. Math. Soc., Volume 110 (2021), 1650, 15 pages | DOI | MR

[9] Hussain, Naveed; Yau, Stephen S.-T.; Zuo, Huaiqing On the Dimension of a New Class of Derivation Lie Algebras Associated to Singularities, Mathematics, Volume 9 (2021) no. 14 | DOI

[10] de Jong, Theo; Pfister, Gerhard Local analytic geometry. Basic theory and applications, Advanced Lectures in Mathematics (ALM), Vieweg & Sohn, 2000, xii+382 pages | DOI | MR | Zbl

[11] Kreuzer, Martin; Robbiano, Lorenzo Computational Commutative Algebra. II, Springer, 2005 | Zbl

[12] Mather, John N.; Yau, Stephen S.-T. Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math., Volume 69 (1982) no. 2, pp. 243-251 | DOI | MR | Zbl

[13] Roozemond, Dan Algorithms for Lie algebras of algebraic groups, Ph. D. Thesis, Technische Universiteit Eindhoven (2010)

[14] Saito, Kyoji Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 | DOI | MR | Zbl

[15] Scheja, Günter; Wiebe, Hartmut Über Derivationen von lokalen analytischen Algebren, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press Inc., 1973, pp. 161-192 | MR | Zbl

[16] Xu, Yi-Jing; Yau, Stephen S.-T. Micro-local characterization of quasi-homogeneous singularities, Am. J. Math., Volume 118 (1996) no. 2, pp. 389-399 | MR | Zbl

[17] Yau, Stephen S.-T. A necessary and sufficient condition for a local commutative algebra to be a moduli algebra: weighted homogeneous case, Complex analytic singularities (Advanced Studies in Pure Mathematics), Volume 8, North-Holland, 1987, pp. 687-697 | DOI | MR | Zbl

[18] Yau, Stephen S.-T.; Zuo, Huaiqing Derivations of the moduli algebras of weighted homogeneous hypersurface singularities, J. Algebra, Volume 457 (2016), pp. 18-25 | DOI | MR | Zbl

[19] Yau, Stephen S.-T.; Zuo, Huaiqing Sharp upper estimate conjecture for the Yau number of a weighted homogeneous isolated hypersurface singularity, Pure Appl. Math. Q., Volume 12 (2016), pp. 165-181 | DOI | MR | Zbl

Cited by Sources: