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1. Introduction

Let n ∈ N>0. We denote by C{x} = C{x1, . . . , xn} the algebra of germs of holomorphic functions at
the origin of Cn and by m its unique maximal ideal, which is generated by germs of holomorphic
functions which vanish at the origin. For a power series f ∈ C{x} we denote by J f the Jacobian

ideal J f =
〈

f , ∂ f
∂x1

, . . . , ∂ f
∂xn

〉
.

By definition, the isomorphism class of a hypersurface germ (V ,0) ⊂ (Cn ,0), where V = { f = 0},
is given by the isomorphism class of the algebra X f = C{x}/I , where I = 〈 f 〉 is the principal
ideal generated by f . If f defines an isolated hypersurface singularity Mather and Yau have
shown, in their celebrated paper [12] from 1982, that the isomorphism class of (V ,0) ⊂ (Cn ,0) is
determined by the isomorphism class of the moduli algebra A(V ) =C{x}/J f . This result is known
as the Mather–Yau Theorem. Hauser and Müller studied in [5] the Lie algebra of derivations of
the moduli algebra L(V ) = Der(A(V ), A(V )) and showed that the isomorphism class for isolated
hypersurface singularities of dimension n ≥ 3 is determined by the isomorphism class of L(V ).
Although we are not using the result by Hauser and Müller in this paper, it motivates the study of
L(V ). In order to distinguish L(V ) from Lie algebras of other types of singularities, L(V ) is called
Yau algebra.

In the last years Hussain, Yau, Zuo and collaborators have constructed many new natural con-
nections between the set of isolated hypersurface singularities and the set of finite dimensional
solvable (respectively nilpotent) Lie algebras (see for example[1, 7–9]).
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In this paper we are going to investigate the Yau algebra itself in the context of quasi-
homogeneous isolated hypersurface singularities. In [16] Xu and Yau have stated an equivalence
between the quasi-homogeneity of a defining equation and the existence of a positive grading of
the moduli algebra. In the same article this equivalence has been extended to properties of the
Yau algebra.

We are going to establish a relation between the dimension of a toral Lie subalgebra of L(V )
and the property of (V ,0) being a Thom–Sebastiani singularity under certain constraints on the
weights of a quasi-homogeneous defining equation f . Let us make these notions more precise:

Definition 1. Let (V ,0) ⊂ (Cn ,0) be an isolated hypersurface singularity.

(1) We say (V ,0) is quasi-homogeneous, if there exists coordinates x1, . . . , xn , weights
w1, . . . , wn ∈ N>0 and a polynomial f ∈ C{x1, . . . , xn}, which is weighted-homogeneous
with respect to w = (w1, . . . , wn), such that

(V ,0) ∼= (V ( f ),0).

If the weight vector is known, we also say that (V ,0) is w-homogeneous.
(2) We say (V ,0) is of Thom–Sebastiani type, if there exists coordinates x1, . . . , xk and

yk+1, . . . , yn and power series h ∈C{x1, . . . , xk }, g ∈C{yk+1, . . . , yn}, such that

(V ,0) ∼= (V (h + g ),0).

We say (V ,0) has quasi-homogeneous summands, if h and g can be chosen to be quasi-
homogeneous.

Then our conjecture is the following:

Conjecture 2. Let (V ,0) ⊂ (Cn ,0) be a quasi-homogeneous isolated hypersurface singularity. Then
(V ,0) is of Thom–Sebastiani type with quasi-homogeneous Thom–Sebastiani summands if, and
only if, L(V ) contains a toral subalgebra t with dimC t≥ 2.

The goal of this paper is to prove the following theorem, which proves a special version of
Conjecture 2:

Theorem 3. Let w = (w, . . . , wn) ∈ Nn
>0 and (V ,0) be a w-homogeneous isolated hypersurface

singularity. Assume that one of the following properties holds:

(a) A(V ) is (Zn ,+) graded.
(b) w satisfies, after possibly permuting the variables,

w1 > . . . > wn > w1

2
.

Then (V ,0) is of Thom–Sebastiani type with quasi-homogeneous Thom–Sebastiani summands if,
and only if, L(V ) contains a toral Lie subalgebra t with dimC t≥ 2.

Remark 4. In [18] Yau and Zuo showed that under the hypothesis from Theorem 3(b) the
Halperin conjecture holds true for L(V ).

This paper is based on work contained in the authors Ph.D. thesis [3].

2. Analytic Gradings and Derivations

In order to understand the relation between the toral Lie subalgebra of the Yau algebra L(V )
and the Thom–Sebastiani property, we first need to introduce the theory of analytic gradings by
Scheja and Wiebe. This theory relates analytic gradings to a certain type of derivations which then
give a connection to a toral Lie subalgebra of the Yau algebra. The theory presented here works
for singularities in general, so we do not restrict ourselves to isolated hypersurface singularities.
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Definition 5. Let A be an analytic C-algebra and (G ,+) an abelian group. A is a graded algebra
if we have a system of group homomorphisms πA

g : A → A for g ∈ G, which induce group

homomorphisms πA
g : A/mn

A → A/mn
A that define a finite grading on A/mn

A for all n ∈ N. A is a
multigraded algebra if G =Ck for a k ∈N.

Remark 6. In case A =C{x}/I and G =Z or G =Zk the notion of analytic gradings by Scheja and
Wiebe can be understood as in the case of polynomial rings: By choosing a suitable system of
coordinates, the ideal I can be generated by weighted (multi)homogeneous power series.

In order to establish a connection between the Yau algebra and the notion of analytic gradings,
we need the following definitions involving the Lie algebra of derivations Der(A) := Der(A, A).

Definition 7. Let A be an analytic C-algebra and I ⊂ A an ideal. Then

DerI (A) = {δ ∈ Der(A) | δ(I ) ⊂ I }.

In case I =mA we write Der′(A) instead of DermA (A).

Definition 8. Let A = C{x}. We call a derivation δ ∈ Der(A) diagonalizable if there exists a
coordinate system y1, . . . , yn , such that

δ=
n∑

i=1
ai yi

∂

∂yi
,

where ai ∈ C for i = 1, . . . ,n. We say that pairwise different diagonalizable derivations δ1, . . . ,δk ∈
Der(A) are simultaneously diagonalizable if there exists a coordinate system y1, . . . , yn , such that

δ j =
n∑

i=1
ai j yi

∂

∂yi
,

where ai j ∈C for i = 1, . . . ,n and for j = 1, . . . ,k.

We obtain the following correspondence between a (C,+) grading of A and the existence of
diagonalizable derivation.

Theorem 9 ([15, (2.2) and (2.3)]). Let A =C{x}/I be an analyticC-algebra. Then A is (C,+) graded
if, and only if, there exists a diagonalizable derivation δ ∈ DerI (C{x}).

Using simultaneously diagonalizable derivations we obtain the following generalization to
multigraded algebras.

Theorem 10 ([3, Theorem 2.26 and Theorem 2.27]). Let A = C{x}/I be an analytic C-algebra.
Then A is (Ck ,+) graded if, and only if, there exist k simultaneously diagonalizable derivations
δ1, . . . ,δk ∈ DerI (C{x}) for i = 1, . . . ,k.

To obtain a relation between A being multigraded and derivations in L(V ) we need the
following result.

Theorem 11 ([19, Theorem 2.2]). Let A = C{x} and I ⊂ A an ideal. Then there exists a natural
isomorphism of Lie algebras

DerI (A)/I Der(A) ∼= Der(A/I ).

The previous theorems imply the following proposition:

Proposition 12. Let A be an analytic C-algebra. Then A is (multi)graded if, and only if, Der(A)
contains a toral Lie subalgebra t with dimC t≥ 1.
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Proof. Let A ∼=C{x}/I . First we assume that A is (multi)graded. Theorem 11 implies the existence
of a canonical map from DerI (C{x}) into Der(A). The image of a diagonalizable derivation under
this map is still diagonalizable and reduces to the notion of diagonalizability of endomorphisms
of vector spaces. Thus a (multi)grading of A implies the existence of toral Lie subalgebra t ⊂
Der(A) with dimC t ≥ 1. Let us now assume that there exists a toral Lie subalgebra t ⊂ Der(A)
with dimC t ≥ 1. Due to [15, (2.1)] we can lift t to DerI (C{x}). By Theorem 10 we obtain that A is
(multi)graded. �

By Proposition 12 the property of A(V ) being (multi)graded is reduced to the investigation
of the existence of toral Lie subalgebras of L(V ). We obtain the following special version of
Proposition 12:

Corollary 13. Let (V ,0) ⊂ (Cn ,0) be an isolated hypersurface singularity. Then A(V ) is
(multi)graded if, and only if, L(V ) contains a toral Lie subalgebra t with dimC t≥ 1.

Remark 14. So far the gradings we considered are complex valued. Due to [15, 3.2] we can restrict
ourselves to rational gradings, which we do from now on.

Next we want to consider computational aspects in order to provide the reader with examples.
Let A be an analytic C-algebra. Then every derivation δ ∈ Der′(A) induces a linear map δ on the
C-vector space mA/m2

A . Denote by gl(mA/m2
A) the Lie algebra of endomorphisms of mA/m2

A . We
define the following:

Definition 15. Let A be an analytic C-algebra. Denote by ρ the morphism of Lie algebras ρ :
Der′(A) → gl(mA/m2

A),δ 7→ δ. We call Der(A)0 = ρ(Der′(A)) the linearization of Der′(A). In case
A is the moduli algebra of an isolated hypersurface singularity (V ,0) ⊂ (Cn ,0), we denote the
linearization of L(V ) by L(V )0.

The next lemma will make it possible for us to compute possible gradings of a zero-
dimensional analytic C-algebra A using Der(A)0, without knowing the coordinate system in
which the algebra is (multi)homogeneous. It also shows that the dimension of any maximal toral
Lie subalgebra is an invariant associated to A, which can be obtain from Der(A)0. This result fol-
lows from [6, Corollary 10.7], [6, Corollary 21.3C] and [13, Lemma 1.39].

Lemma 16. Let A be a zero-dimensional analytic C-algebra. Furthermore, let t ⊂ Der(A) and
t′ ⊂ Der(A)0 be arbitrary maximal toral Lie subalgebras. Then dimC t = dimC t

′. In particular, the
dimension of maximal toral Lie subalgebras is an invariant of Der(A) respectively Der(A)0.

Now we are able to consider an example, where we compute possible weight-vectors of an
analytic algebra as well as the dimension of the maximal toral Lie subalgebras.

Example 17. Let f1 = 7x6 y ∈ C[x, y] and f2 = x7 − 11y10 ∈ C[x, y]. Define I = 〈 f1, f2〉 and
A =C[x, y]/I . Furthermore, let

M =
( ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

)
∈C[x, y]2×2.

Denote by M the matrix resulting from M by considering the entries as elements of A. Then
Der(A) = syzA(M). Using the computer algebra system Singular (see [2]) we obtain that Der(A)
is generated as an A-module by the derivations

δ1 = 10x
∂

∂x
+7y

∂

∂y
, δ2 = y2 ∂

∂y
, δ3 =−11y9 ∂

∂x
+6x6 ∂

∂y
.

We can see that δ1 is a diagonalizable derivation, hence A is homogeneous with respect to the
weight-vector w = (10,7). A further computation shows that dimCDer(A)0 = 1. Then Lemma 16
implies that t is a maximal toral Lie subalgebra Der(A).
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3. Proof of Theorem 3

So far, we have seen that the notion of grading of the moduli algebra A(V ) is related to the
existence of a toral Lie subalgebra of the Yau algebra L(V ). In [16] it was shown by Yau and Xu
that (V ,0) is quasi-homogeneous if, and only if, A(V ) admits a positive grading. Due to this we are
going to work in the setup of quasi-homogeneous isolated hypersurface singularities to establish
a relationship between the Thom–Sebastiani property of (V ,0) and the existence of an at least
two-dimensional toral Lie subalgebra t ⊂ L(V ). In the following we use the classical notion of
(multi)graded polynomial rings, see for example [11] for more details. This notion coincides with
the notion introduced in Section 2.

This section is dedicated to the proof of Theorem 3. We split the section into two parts, each
proving one of the statements of the theorem.

3.1. Proof of Theorem 3(a)

Before proving the first part of the theorem, we show that we can assume that the order of the
defining equation f of V is at least 3.

Proposition 18. Let (V ,0) ⊂ (Cn ,0) be a quasi-homogeneous isolated hypersurface singularity and
f ∈C{x} with (V ( f ),0) ∼= (V ,0). Assume that ord( f ) = 2. Then (V ,0) is of Thom–Sebastiani type with
quasi-homogeneous Thom–Sebastiani summands.

Proof. By the Splitting Lemma (see [10, Lemma 9.2.10]) we know that f is right-equivalent to
x2

1 + . . .+ x2
k + g ∈ C{x}, where g ∈ C{xk+1, . . . , xn} defines an isolated hypersurface singularity and

ord(g ) ≥ 3. We obtain the isomorphism of moduli algebras A(V ( f )) ∼= A(V (g )). In particular,
A(V (g )) is positively graded, since f is quasi-homogeneous. It follows from [16, Theorem 1.2]
and the Mather–Yau Theorem that g is right-equivalent to a quasi-homogeneous polynomial
h ∈ C{xk+1, . . . , xn}. Thus (V ( f ),0) is of Thom–Sebastiani type with quasi-homogeneous Thom–
Sebastiani summands. �

Remark 19. Proposition 18 justifies to consider Theorem 3 only for the case ord( f ) ≥ 3.

For the next result, we need the following definition.

Definition 20. Let f ∈ C{x}. We say f defines a Brieskorn–Pham singularity if there exist integers
a1, . . . , an ∈Nn

>0, such that f is right-equivalent to xa1
1 + . . .+xan

n .

Theorem 3(a) follows from the following proposition, which gives a characterization of
Brieskorn–Pham singularities.

Proposition 21. Let f ∈ C{x} define an isolated hypersurface singularity. Then the following are
equivalent:

(1) f defines a Brieskorn–Pham singularity.
(2) A(V ( f )) is (Zn ,+) graded.
(3) There exists an automorphism ϕ ∈ Aut(C{x}), such that ϕ(J f ) is a monomial ideal.

Proof. To keep notation short we set A := A(V ( f )).
We first show that (1) implies (2). Let f define a Brieskorn–Pham singularity, i.e. there exist

integers ai ∈ N>0, i = 1, . . . ,n with f = ∑n
i=1 xai

i . Then J f = 〈xa1−1
1 , . . . , xan−1

n 〉. Denote by ei ∈
Zn , i = 1, . . . ,n the canonical basis of Zn . We define for arbitrary k ∈Z the group homomorphism
πA

k·ei
: A → A via ∑

β=(β1,...,βn )∈Nn
cβxβ1

1 · . . . · xβn
n 7→ ∑

β∈Nn s.th. βi=k
cβxβ1

1 · . . . · xk
i · . . . · xβn

n .
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For general v =∑n
i=1 ki ei we define πA

v =πA
k1e1

◦ . . .◦πA
kn en

. It follows immediately that πA
v satisfies

the requirements Definition 5, hence Statement (2) follows.
Next we show (2) implies (3). Since A is (Zn ,+) graded, there exists an isomorphism ϕ ∈

Aut(C{x}), such thatϕ(J f ) is generated by polynomials which are multihomogeneous with respect
to the weights wi = ei for i = 1, . . . ,n. Thus ϕ(J f ) is a monomial ideal.

Finally, we show (3) implies (1). By assumption there exists an isomorphism ϕ ∈ Aut(C{x}),
such that ϕ(J f ) = Jϕ( f ) is a monomial ideal. Since Jϕ( f ) defines a zero-dimensional complete
intersection ideal, we obtain that it is generated by xa1

1 , . . . , xan
n for certain a1, . . . , an ∈Nn

>0. Then
g = xa1+1

1 + . . .+ xan+1
n satisfies Jg = Jϕ( f ). By the Mather–Yau Theorem, f is right-equivalent to g ,

hence f defines a Brieskorn–Pham singularity. �

Remark 22. In [4] we characterize, together with M. Schulze, up to analytic isomorphism all
hypersurface singularities with monomial Jacobian ideal J f .

3.2. Proof of Theorem 3(b)

Before we prove our result, we state a characterization of a zero-dimensional algebra to be the
moduli algebra of a quasi-homogeneous isolated hypersurface singularity.

Remark 23. In order to keep our notation short, we will write ∂xi instead of ∂
∂xi

.

To prove our result we need the following version of the Poincaré Lemma:

Lemma 24. Let F1, . . . ,Fn ∈C{x} with

∂x j Fi = ∂xi F j

for all 1 ≤ i , j ≤ n. Then there exists an f ∈C{x}, such that Fi = ∂xi f .

Furthermore, we need the following auxiliary lemma, which is part of the proof of [17, Theo-
rem 2]:

Lemma 25. Let f ∈ m ⊂ C{x}. Assume that there exists a weight-vector w = (w1, . . . , wn) ∈ Qn
>0,

such that the partial derivatives of f are w-homogeneous. Then f = ∑n
i=1

wi
degw(∂xi f )+wi

xi∂xi f . In

particular, f is quasi-homogeneous.

Proof. The result follows immediately from the following computation:

f =
∫ 1

0

d

dt
f (t w1 x1, . . . , t wn xn)dt =

n∑
i=1

wi

degw(∂xi f )+wi
xi∂xi f . �

Using the Poincaré-Lemma and Lemma 25, Yau proved the following theorem:

Theorem 26 ([17, Theorem 3]). Let I ⊂ C{x} be an ideal and w = (w1, . . . , wn) ∈ Nn
>0. Then

A := C{x}/I is the moduli algebra of a w-homogeneous hypersurface singularity f ∈ C{x} if and
only if I is generated by F1, . . . ,Fn ∈C{x} with the following properties:

(1) the Fi are weighted-homogeneous with respect to w,
(2) ∂x j Fi = ∂xi F j for all 1 ≤ i , j ≤ n, and
(3) ∂xi f = Fi for all 1 ≤ i ≤ n.

In the following we are going to work with polynomials, which are homogeneous with respect
to two weight-vectors. Therefore we state the following definition

Definition 27. Let F ∈C[x] be a polynomial and w,v ∈Qn\{0}Q-linearly independent. We say F is
multihomogeneous with respect to w and v if F is w-homogeneous and v-homogeneous.
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If F is multihomogeneous with respect to w and v then F is also λw+µv - homogeneous for
arbitrary λ,µ ∈Q. In the next lemma we are going to show that we can assume certain properties
of at least one of the weight-vectors.

Lemma 28. Let w = (w1, . . . , wn) ∈Nn
>0 and v′ = (v ′

1, . . . , v ′
n) ∈Qn\{0}, where w and v′ areQ-linearly

independent. Then there exists a v = (v1, . . . , vn) ∈Qn\{0}, such that

(1) vi ≥ wi for all 1 ≤ i ≤ n, and
(2) there exists a 1 ≤ k ≤ n with vk = wk .

Proof. Since wi > 0 for all i = 1, . . . ,n, we can find a λ ∈N, such that v =λ ·w+v′ satisfies vi ≥ wi

for all 1 ≤ i ≤ n. Let v = (v1, . . . , vn). By choosing k with vk −wk ≤ vi −wi for all i 6= k and scaling v
by wk

vk
, we can additionally assume that vk = wk . �

Remark 29. Let w = (w1, . . . , wn) ∈ Nn
>0 and v = (v1, . . . , vn) ∈ Qn\{0}, where w and v are linearly

independent. Furthermore, let F ∈ C[x] be multihomogeneous with respect to w and v. By
Lemma 28 we can assume without loss of generality that v satisfies vi ≥ wi for all 1 ≤ i ≤ n and
that there exists a k ∈N such that vk = wk . This yields that degv F ≥ degw F.

Now we are able to prove a weak version of our result.

Proposition 30. Let I ⊂ C{x} be an ideal. Then A := C{x}/I is the moduli algebra of a
quasi-homogeneous isolated hypersurface singularity (V ,0) of Thom–Sebastiani type with quasi-
homogeneous Thom–Sebastiani summands if, and only if, I is generated by F1, . . . ,Fn ∈m2 with the
following properties:

(1) I is zero-dimensional,
(2) There exist weight-vectors w ∈Nn

>0 and v ∈Qn\{0}, where w and v are Q-linearly indepen-
dent, such that the Fi are multihomogeneous with respect to w and v, and

(3) ∂x j Fi = ∂xi F j for all 1 ≤ i , j ≤ n.

Proof. First we show the “only if” direction. Since (V ,0) is quasi-homogeneous and of Thom–
Sebastiani type with quasi-homogeneous Thom–Sebastiani summands, we can assume that
there exist 2 ≤ r < n, f1 ∈ C{x1, . . . , xr } and f2 ∈ C{xr+1, . . . , xn} such that f = f1 + f2 satis-
fies (V ,0) ∼= (V ( f ),0). Denote by w = (w1, . . . , wn) ∈ Nn

>0 a weight-vector of f and define v =
(0, . . . ,0, wr+1, . . . , wn) and Fi = ∂xi f . Then Fi is w-homogeneous and v-homogeneous for i =
1, . . . ,n. Then Condition (1) and (2) are satisfied, since I = J f . Condition (3) follows by symme-
try of second derivatives.

Now we show the “if” direction. Let w = (w1, . . . , wn) and v = (v1, . . . , vn). Due to Theorem 26
there exists a w-homogeneous f ∈ C{x} satisfying ∂xi f = Fi for 1 ≤ i ≤ n. In particular, it holds
that ord( f ) ≥ 3. By assumption f defines an isolated hypersurface singularity, since I is zero-
dimensional. Due to Lemma 28 we can assume that vi ≥ wi and that there exists an index k,
such that vk = wk . By assumption, the partial derivatives of f are w-homogeneous, as well as v-
homogeneous. Due to Lemma 25 and due to the uniqueness of the weights of f , see [14, Satz 1.3],
we obtain wi

degw(∂xi f )+wi
= vi

degv(∂xi f )+ vi
(1)

for all 1 ≤ i ≤ n. For any index k with wk = vk Equation (1) implies

degw(∂xk f ) = degv(∂xk f ). (2)

Assume ∂2
xi ,xk

f 6= 0. For any 1 ≤ i ≤ n with vi > wi Equation (2) yields

degw(∂2
xi ,xk

f ) = degw(∂xk f )−wi > degv(∂xk f )− vi = degv(∂2
xi ,xk

f ). (3)

Inequality (3) and Remark 29 yield a contradiction, hence

∂2
xi ,xk

f = 0.
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This means that the partial derivatives with respect to variables xk which satisfy wk = vk do not
depend on variables xi with vi > wi and vice versa. We reorder the x variables together with the
corresponding weights, such that vi = wi for 1 ≤ i ≤ r and vi > wi for r +1 ≤ i ≤ n. Under our
assumptions, Lemma 24 and Lemma 25 imply the existence of w-homogeneous f1(x1, . . . , xr ) and
f2(xr+1, . . . , xn), such that ∂xi f1 = ∂xi f for 1 ≤ i ≤ r and ∂xi f2 = ∂xi f for r +1 ≤ i ≤ n. This proves
the claim. �

Before we prove Theorem 3 we state an example to see how Proposition 30 can be applied.

Example 31. Let F1 = 7x6 y, F2 = x7−11y10 and F3 = 13z12 be polynomials inC[x, y, z]. The Fi are
multihomogeneous with respect to the weight-vectors w = (10,7,1) and v = (0,0,1). Consider the
ideal I = 〈F1,F2,F3〉 ⊂ C[x, y, z]. Using SINGULAR we obtain that I is a zero-dimensional ideal.
The condition that ∂x j Fi = ∂xi F j for all 1 ≤ i , j ≤ 3 can also be easily verified. Then Proposition 30
tells us, that C[x, y, z]/I is the moduli algebra of a quasi-homogeneous polynomial.

Indeed, one can verify that f = y x7 − y11 + z13 satisfies I = J f and f is quasi-homogeneous
with respect to the weight-vector w′ = (130,91,77).

Using Proposition 30, which is highly coordinate dependent, we are able to prove Theo-
rem 3(b).

Proof of Theorem 3 (b). Denote by f a w-homogeneous defining equation of (V ,0). If (V ,0) is of
Thom–Sebastiani type with quasi-homogeneous summands it follows immediately that A(V ) is
multihomogeneous and hence dimC t≥ 2. Let dimC t≥ 2 or, equivalently, A(V ) be multihomoge-
neous. Due to [14, Satz 4.1] we know that f ∈ J f , hence J f is minimaly generated by ∂x1 f , . . . ,∂xn f .
Since f is w-homogeneous, all of the partial derivatives of f are w-homogeneous. Due to this we
can assume that A(V ) is w-homogeneous. Denote by F1, . . . ,Fn a multihomogeneous generat-
ing system of J f and by d = degw( f ) the w-degree of f . Since w is a positive weight-vector, the
weighted degrees of a minimal (multi)homogeneous generating system are uniquely determined
(see [11, Proposition 4.7.8]). Thus we can assume that, after possibly renaming the Fi , the follow-
ing holds:

degw(Fi ) = degw(∂xi f ) = d −wi

for 1 ≤ i ≤ n. Write ∂xi f =∑n
j=1 mi j F j . Due to the w-homogeneity, we obtain

degw(mi j ) = w j −wi . (4)

The fact that w1 > . . . > wn implies together with Equation (4) that the matrix M = (mi j ) ∈C{x}n×n

is an invertible, upper triangular matrix. Our assumption implies

w j −wi < wn − wn

2
= wn

2
< w1,

hence the matrix M has only constant entries and is diagonal. Due to this, the partial derivatives
of f are already multihomogeneous and Proposition 30 implies that (V ,0) is of Thom–Sebastiani
type with quasi-homogeneous summands. �

Let us consider two examples. We start by proving that a given quasi-homogeneous isolated
hypersurface singularity is not of Thom–Sebastiani type.

Example 32. Consider the isolated hypersurface singularity defined by f = y x7 − y11 ∈ C[x, y].
The polynomial f is quasi-homogeneous with respect to the weight-vector w = (10,7). We obtain
J f = 〈7x6 y, x7 − 11y10〉, which is the same ideal as in Example 17. This implies that for every
maximal toral Lie subalgebra t ⊂ L(V ) it holds that dimC t = 1. Since 10 > 7 > 10

2 = 5, Theorem 3
implies that f cannot define a hypersurface singularity of Thom–Sebastiani type.

In our next example we want use Theorem 3 to show that a given defining equation is of Thom–
Sebastiani type.
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Example 33. Consider f = y · (x−z)7− y11+z13 ∈C[x, y, z] and (V ,0) ⊂ (C3,0), where V = { f = 0}.
One can use Singular to verify that f defines an isolated hypersurface singularity. Next we need
to see that (V ,0) is quasi-homogeneous and that (V ,0) satisfies the assumptions of Theorem 3.
We proceed as in Example 17. It holds that

δ= (130x −53z)
∂

∂x
+91y

∂

∂y
+77z

∂

∂z
∈ Der(X f ).

The derivation δ satisfies δ(x−z) = 130(x−z), δ(y) = 91y and δ(z) = 77z. This implies that (V ,0) is
quasi-homogeneous with respect to the weight-vector w = (130,91,77), hence (V ,0) satisfies the
assumptions of Theorem 3. Next we need to show that (V ,0) is of Thom–Sebastiani type. Using
Singular we obtain that L(V ) contains the derivations

δ1 = (10x −10z)
∂

∂x
+ y

∂

∂y
and δ2 = z

∂

∂x
+ z

∂

∂z
.

Define t= 〈δ1,δ2〉. The derivations δ1 and δ2 are simultaneously diagonalizable with eigenvectors
x−z, y and z and satisfy [δ1,δ2] = 0. This implies t is a toral Lie subalgebra of L(V ) with dimC t= 2.
Theorem 3 implies that (V ,0) is of Thom–Sebastiani type.
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