Complex analysis and geometry
Canonical metrics on generalized Hartogs triangles
Comptes Rendus. Mathématique, Volume 360 (2022) no. G4, pp. 305-313.

This paper is concerned with the canonical metrics on generalized Hartogs triangles. As main contributions, we first show the existence of a Kähler–Einstein metric on generalized Hartogs triangles. On the other hand, we calculate the explicit expression for Rawnsley’s ε-function, and then we give the sufficient and necessary condition for the canonical metric to be balanced. As an application, we also find that there exist canonical metrics on generalized Hartogs triangles being both Kähler–Einstein and balanced.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.283
Classification: 32A25, 32Q15, 53C55
Bi, Enchao 1; Hou, Zelin 1

1 School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, P.R. China
@article{CRMATH_2022__360_G4_305_0,
     author = {Bi, Enchao and Hou, Zelin},
     title = {Canonical metrics on generalized {Hartogs} triangles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {305--313},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G4},
     year = {2022},
     doi = {10.5802/crmath.283},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.283/}
}
TY  - JOUR
AU  - Bi, Enchao
AU  - Hou, Zelin
TI  - Canonical metrics on generalized Hartogs triangles
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 305
EP  - 313
VL  - 360
IS  - G4
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.283/
DO  - 10.5802/crmath.283
LA  - en
ID  - CRMATH_2022__360_G4_305_0
ER  - 
%0 Journal Article
%A Bi, Enchao
%A Hou, Zelin
%T Canonical metrics on generalized Hartogs triangles
%J Comptes Rendus. Mathématique
%D 2022
%P 305-313
%V 360
%N G4
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.283/
%R 10.5802/crmath.283
%G en
%F CRMATH_2022__360_G4_305_0
Bi, Enchao; Hou, Zelin. Canonical metrics on generalized Hartogs triangles. Comptes Rendus. Mathématique, Volume 360 (2022) no. G4, pp. 305-313. doi : 10.5802/crmath.283. http://www.numdam.org/articles/10.5802/crmath.283/

[1] Bi, Enchao; Feng, Zhiming; Tu, Zhenhan Balanced metric on the Fock–Bargmann–Hartogs domains, Ann. Global Anal. Geom., Volume 49 (2016) no. 4, pp. 349-359 | MR | Zbl

[2] Bi, Enchao; Su, Guicong Balanced metric and Berezin quantization on Hartogs triangles, Ann. Mat. Pura Appl., Volume 200 (2021) no. 1, pp. 273-285 | MR | Zbl

[3] Bland, John S. The Einstein-Kähler metric on {|z| 2 +|w| 2p <1}, Mich. Math. J., Volume 33 (1986) no. 2, pp. 209-220 | MR | Zbl

[4] Chen, Liwei The L p boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl., Volume 448 (2017) no. 1, pp. 598-610 | DOI | MR | Zbl

[5] Cheng, Shiu-Yuen; Yau, Shing-Tung On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math., Volume 33 (1980) no. 4, pp. 507-544 | DOI | Zbl

[6] D’Angelo, John P. An explicit computation of the Bergman kernel function, J. Geom. Anal., Volume 4 (1994) no. 1, pp. 23-34 | DOI | MR | Zbl

[7] Donaldson, Simon K. Scalar curvature and projective embeddings, J. Differ. Geom., Volume 59 (2001) no. 3, pp. 479-522 | MR | Zbl

[8] Edholm, Luke D. Bergman theory of certain generalized Hartogs triangles, Pac. J. Math., Volume 284 (2016) no. 2, pp. 327-342 | DOI | MR | Zbl

[9] Edholm, Luke D.; Mcneal, Jeffery D. The Bergman projection on fat Hartogs triangles: L p boundedness, Proc. Am. Math. Soc., Volume 144 (2015) no. 5, pp. 2185-2196 | DOI | MR | Zbl

[10] Engliš, Miroslav Berezin quantization and reproducing kernels on complex domains, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 411-479 | DOI | MR | Zbl

[11] Feng, Zhiming; Tu, Zhenhan Balanced metric on some Hartogs type domains over bounded symmetric domains, Ann. Global Anal. Geom., Volume 47 (2005) no. 4, pp. 305-333 | DOI | MR | Zbl

[12] Loi, Andrea; Zedda, Michela Balanced metrics on Hartogs domains, Abh. Math. Semin. Univ. Hamb., Volume 81 (2001) no. 1, pp. 69-77 | DOI | MR | Zbl

[13] Mabuchi, Toshiki Stability of extremal Kähler manifolds, Osaka J. Math., Volume 41 (2004) no. 3, pp. 563-582 | Zbl

[14] Su, Guicong Geometric properties of the pentablock, Complex Anal. Oper. Theory, Volume 14 (2020) no. 4, pp. 1-14 | MR | Zbl

[15] Wang, An; Yin, Weiping; Zhang, Liyou; Roos, Guy The Kähler–Einstein metric for some Hartogs domains over bounded symmetric domains, Sci. China, Volume 49 (2006) no. 9, pp. 1175-1210 | DOI | Zbl

[16] Zapałowski, Paweł Proper holomorphic mappings between complex ellipsoids and generalized Hartogs triangles (2012) (https://arxiv.org/abs/1211.0786)

[17] Zapałowski, Paweł Proper holomorphic mappings between generalized Hartogs triangles, Ann. Mat. Pura Appl., Volume 196 (2017) no. 3, pp. 1055-1071 | DOI | MR | Zbl

[18] Zedda, Michela Canonical metric on Cartan–Hartogs domains, Int. J. Geom. Methods Mod. Phys., Volume 9 (2012) no. 1, 125011, 13 pages | MR | Zbl

Cited by Sources: