Complex analysis and geometry
Quasiconformal extension for harmonic mappings on finitely connected domains
Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 905-909.

We prove that a harmonic quasiconformal mapping defined on a finitely connected domain in the plane, all of whose boundary components are either points or quasicircles, admits a quasiconformal extension to the whole plane if its Schwarzian derivative is small. We also make the observation that a univalence criterion for harmonic mappings holds on uniform domains.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.233
Classification: 30C55, 30C62, 31A05
Efraimidis, Iason 1

1 Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, TX 79409, United States.
@article{CRMATH_2021__359_7_905_0,
     author = {Efraimidis, Iason},
     title = {Quasiconformal extension for harmonic mappings on finitely connected domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {905--909},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {7},
     year = {2021},
     doi = {10.5802/crmath.233},
     zbl = {07398742},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.233/}
}
TY  - JOUR
AU  - Efraimidis, Iason
TI  - Quasiconformal extension for harmonic mappings on finitely connected domains
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 905
EP  - 909
VL  - 359
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.233/
DO  - 10.5802/crmath.233
LA  - en
ID  - CRMATH_2021__359_7_905_0
ER  - 
%0 Journal Article
%A Efraimidis, Iason
%T Quasiconformal extension for harmonic mappings on finitely connected domains
%J Comptes Rendus. Mathématique
%D 2021
%P 905-909
%V 359
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.233/
%R 10.5802/crmath.233
%G en
%F CRMATH_2021__359_7_905_0
Efraimidis, Iason. Quasiconformal extension for harmonic mappings on finitely connected domains. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 905-909. doi : 10.5802/crmath.233. http://www.numdam.org/articles/10.5802/crmath.233/

[1] Ahlfors, Lars V. Quasiconformal reflections, Acta Math., Volume 109 (1963), pp. 291-301 | DOI | MR | Zbl

[2] Astala, Kari; Heinonen, Juha On quasiconformal rigidity in space and plane, Ann. Acad. Sci. Fenn., Math., Volume 13 (1988) no. 1, pp. 81-92 | DOI | MR | Zbl

[3] Chuaqui, Martin; Duren, Peter L.; Osgood, Brad G. The Schwarzian derivative for harmonic mappings, J. Anal. Math., Volume 91 (2003), pp. 329-351 | DOI | MR | Zbl

[4] Duren, Peter L. Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, 2004 | MR | Zbl

[5] Efraimidis, Iason Criteria for univalence and quasiconformal extension for harmonic mappings on planar domains (https://arxiv.org/abs/2009.14766, to appear in the Annales Fennici Mathematici)

[6] Gehring, Frederick W.; Hag, Kari The ubiquitous quasidisk, Mathematical Surveys and Monographs, 184, American Mathematical Society, 2012 | MR | Zbl

[7] Gehring, Frederick W.; Osgood, Brad G. Uniform domains and the quasihyperbolic metric, J. Anal. Math., Volume 36 (1979), pp. 50-74 | DOI | MR | Zbl

[8] Hernández, Rodrigo; Martín, María J. Criteria for univalence and quasiconformal extension of harmonic mappings in terms of the Schwarzian derivative, Arch. Math., Volume 104 (2015) no. 1, pp. 53-59 | DOI | MR | Zbl

[9] Hernández, Rodrigo; Martín, María J. Pre-Schwarzian and Schwarzian derivatives of harmonic mappings, J. Geom. Anal., Volume 25 (2015) no. 1, pp. 64-91 | DOI | MR | Zbl

[10] Lehto, Olli E.; Virtanen, K. I. Quasiconformal mappings in the plane, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973 | MR | Zbl

[11] Martio, Olli; Sarvas, Jukka Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Math., Volume 4 (1979) no. 2, pp. 383-401 | DOI | MR | Zbl

[12] Osgood, Brad G. Univalence criteria in multiply-connected domains, Trans. Am. Math. Soc., Volume 260 (1980) no. 2, pp. 459-473 | DOI | MR | Zbl

[13] Springer, George Fredholm eigenvalues and quasiconformal mapping, Acta Math., Volume 111 (1964), pp. 121-142 | DOI | MR | Zbl

Cited by Sources: