Équations aux dérivées partielles, Physique mathématique
The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation
Comptes Rendus. Mathématique, Tome 359 (2021) no. 7, pp. 881-903.

On analyse le problème de Cauchy–Dirichlet pour l’équation de Moore–Gibson–Thompson avec des données non-homogènes. Deux méthodes sont considérées : la théorie des équations hyperboliques et la théorie des semi-groupes d’opérateurs. Il s’agit d’un problème hyperbolique mixte avec une frontière spatiale caractéristique. Par conséquent, les résultats de régularité présentent certaines lacunes par rapport au cas non caractéristique.

The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation is analyzed. With the focus on non-homogeneous boundary data, two approaches are offered: one is based on the theory of hyperbolic equations, while the other one uses the theory of operator semigroups. This is a mixed hyperbolic problem with a characteristic spatial boundary. Hence, the regularity results exhibit some deficiencies when compared with the non-characteristic case.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.231
Classification : 35B65, 35L35, 35L50, 35R09
Bucci, Francesca 1 ; Eller, Matthias 2

1 Università degli Studi di Firenze, Dipartimento di Matematica e Informatica, Via S. Marta 3, 50139 Firenze, Italy.
2 Georgetown University, Department of Mathematics and Statistics, Georgetown 360, 37th and O Streets NW, Washington DC 20057, USA.
@article{CRMATH_2021__359_7_881_0,
     author = {Bucci, Francesca and Eller, Matthias},
     title = {The {Cauchy{\textendash}Dirichlet} problem for the {Moore{\textendash}Gibson{\textendash}Thompson} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {881--903},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {7},
     year = {2021},
     doi = {10.5802/crmath.231},
     zbl = {07398741},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.231/}
}
TY  - JOUR
AU  - Bucci, Francesca
AU  - Eller, Matthias
TI  - The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 881
EP  - 903
VL  - 359
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.231/
DO  - 10.5802/crmath.231
LA  - en
ID  - CRMATH_2021__359_7_881_0
ER  - 
%0 Journal Article
%A Bucci, Francesca
%A Eller, Matthias
%T The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation
%J Comptes Rendus. Mathématique
%D 2021
%P 881-903
%V 359
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.231/
%R 10.5802/crmath.231
%G en
%F CRMATH_2021__359_7_881_0
Bucci, Francesca; Eller, Matthias. The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation. Comptes Rendus. Mathématique, Tome 359 (2021) no. 7, pp. 881-903. doi : 10.5802/crmath.231. http://www.numdam.org/articles/10.5802/crmath.231/

[1] Alves, Michele O.; Caixeta, Arthur H.; Jorge Silva, Marcio A.; Rodrigues, José H. Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach, Z. Angew. Math. Phys., Volume 69 (2018) no. 4, 106, 19 pages | DOI | MR | Zbl

[2] Bucci, Francesca; Lasiecka, Irena Feedback control of the acoustic pressure in ultrasonic wave propagation, Optimization, Volume 68 (2019) no. 10, pp. 1811-1854 | DOI | MR | Zbl

[3] Bucci, Francesca; Pandolfi, Luciano On the regularity of solutions to the Moore–Gibson–Thompson equation: a perspective via wave equations with memory, J. Evol. Equ., Volume 20 (2020) no. 3, pp. 837-867 | DOI | MR | Zbl

[4] Caixeta, Arthur H.; Lasiecka, Irena; Cavalcanti, Valéria N. D. Global attractors for a third order in time nonlinear dynamics, J. Differ. Equations, Volume 261 (2016) no. 1, pp. 113-147 | DOI | MR | Zbl

[5] Caixeta, Arthur H.; Lasiecka, Irena; Cavalcanti, Valéria N. D. On long time behavior of Moore–Gibson–Thompson equation with molecular relaxation, Evol. Equ. Control Theory, Volume 5 (2016) no. 4, pp. 661-676 | MR | Zbl

[6] Cattaneo, Carlo Sulla conduzione del calore, Atti Del Seminar. Mat. Fis. Univ. Modena, Volume 3 (1949), pp. 83-101 | MR | Zbl

[7] Cattaneo, Carlo On a form of heat conduction equation which eliminates the paradox of instantaneous propagation, C. R. Math. Acad. Sci. Paris, Volume 246 (1958), pp. 431-433 | Zbl

[8] Chazarain, Jacques; Piriou, Alain Introduction à la théorie des équations aux dérivées partielles linéaires [Introduction to the theory of linear partial differential equations], Gauthier-Villars, 1981 (Ouvrage publié avec le concours du C.N.R.S) | Zbl

[9] Chen, Wenhui; Palmieri, Alessandro Nonexistence of global solutions for the semilinear Moore–Gibson–Thompson equation in the conservative case, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 9, pp. 5513-5540 | DOI | MR | Zbl

[10] Conejero, José A.; Lizama, Carlos; Rodenas, Francisco Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation, Appl. Math. Inf. Sci., Volume 9 (2015) no. 5, pp. 2233-2238 | DOI | MR

[11] Corduneanu, Constantin Integral Equations and Applications, Cambridge University Press, 2008 | Zbl

[12] Dekkers, Adrien; Rozanova-Pierrat, Anna Models of nonlinear acoustics viewed as an approximation of the Navier–Stokes and Euler compressible isentropic systems, Commun. Math. Sci., Volume 18 (2020) no. 8, pp. 2075-2119 | DOI | MR | Zbl

[13] Dell’Oro, Filipo; Lasiecka, Irena; Pata, Vittorino The Moore–Gibson–Thompson equation with memory in the critical case, J. Differ. Equations, Volume 261 (2016) no. 7, pp. 4188-4222 | DOI | MR | Zbl

[14] Dell’Oro, Filipo; Lasiecka, Irena; Pata, Vittorino A note on the Moore–Gibson–Thompson equation with memory of type II, J. Evol. Equ., Volume 20 (2020) no. 4, pp. 1251-1268 | DOI | MR | Zbl

[15] Dell’Oro, Filipo; Pata, Vittorino On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., Volume 76 (2017) no. 3, pp. 641-655 | DOI | MR | Zbl

[16] Enflo, Bengt O.; Hedberg, Claes M. Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Fluid Mechanics and its Applications, 67, Springer, 2006 | Zbl

[17] Fattorini, Hector O. Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, 108, North-Holland, 1985 | MR | Zbl

[18] Hörmander, Lars V. The analysis of linear partial differential operators. II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer, 1983 | Zbl

[19] Hörmander, Lars V. The analysis of linear partial differential operators, III. Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | Zbl

[20] Jordan, Pedro M. Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons, J. Acoust. Soc. Am., Volume 124 (2008) no. 4, p. 2491-2491 | DOI

[21] Jordan, Pedro M. Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst., Volume 19 (2014) no. 7, pp. 2189-2205 | MR | Zbl

[22] Kaltenbacher, Barbara Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, Volume 4 (2015) no. 4, pp. 447-491 | DOI | MR | Zbl

[23] Kaltenbacher, Barbara; Lasiecka, Irena; Marchand, Richard J. Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Control Cybern., Volume 40 (2011) no. 4, pp. 971-988 | MR | Zbl

[24] Kaltenbacher, Barbara; Lasiecka, Irena; Pospieszalska, Maria K. Wellposedness and exponential decay of the energy in the nonlinear Moore–Gibson–Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 11, 1250035, 34 pages | Zbl

[25] Kaltenbacher, Barbara; Nikolić, Vanja The Jordan–Moore–Gibson–Thompson equation: well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time, Math. Models Methods Appl. Sci., Volume 29 (2019) no. 13, pp. 2523-2556 | DOI | MR | Zbl

[26] Kaltenbacher, Barbara; Nikolić, Vanja Vanishing relaxation time limit of the Jordan–Moore–Gibson–Thompson wave equation with Neumann and absorbing boundary conditions, Pure Appl. Funct. Anal., Volume 5 (2020) no. 1, pp. 1-26 | MR | Zbl

[27] Lasiecka, Irena; Lions, Jacques-Louis; Triggiani, Roberto Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., Volume 65 (1986) no. 2, pp. 149-192 | MR | Zbl

[28] Lasiecka, Irena; Triggiani, Roberto Regularity of hyperbolic equations under L 2 (0,T;L 2 (Γ))-Dirichlet boundary terms, Appl. Math. Optim., Volume 10 (1983) no. 3, pp. 275-286 | DOI | MR | Zbl

[29] Lasiecka, Irena; Triggiani, Roberto Control theory for partial differential equations: continuous and approximation theories, I. Abstract parabolic systems; II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and Its Applications, 74-75, Cambridge University Press, 2000 | Zbl

[30] Lasiecka, Irena; Wang, Xiaojun Moore–Gibson–Thompson equation with memory, part II: General decay of energy, J. Differ. Equations, Volume 259 (2015) no. 12, pp. 7610-7635 | DOI | MR | Zbl

[31] Lasiecka, Irena; Wang, Xiaojun Moore–Gibson–Thompson equation with memory. part I: Exponential decay of energy, Z. Angew. Math. Phys., Volume 67 (2016) no. 2, 17, 23 pages | MR | Zbl

[32] Lecaros, Rodrigo; Mercado, Alberto; Zamorano, Sebastián An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound (2020) (https://arxiv.org/abs/2001.07673v1)

[33] Lions, Jacques-Louis Contrôle des systèmes distribués singuliers, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], 13, Gauthier-Villars, 1983 | Zbl

[34] Lions, Jacques-Louis; Magenes, Enrico Non-Homogeneous Boundary Value Problems and Applications, Vols. I and II, Grundlehren der mathematischen Wissenschaften, 181-182, Springer, 1972

[35] Liu, Shitao; Triggiani, Roberto An inverse problem for a third order PDE arising in high-intensity ultrasound: global uniqueness and stability by one boundary measurement, J. Inverse Ill-Posed Probl., Volume 21 (2013) no. 6, pp. 825-869 | MR | Zbl

[36] Liu, Shitao; Triggiani, Roberto Inverse problem for a linearized Jordan–Moore–Gibson–Thompson equation, New prospects in direct, inverse and control problems for evolution equations (Springer INdAM Series), Volume 10, Springer, 2014, pp. 305-351 (selected papers based on the presentations at the international conference “Differential equations, inverse problems and control theory”, Cortona, Italy, June 16–21, 2013) | MR | Zbl

[37] Liu, Wenjun; Chen, Zhijing; Chen, Dongqin New general decay results for a Moore–Gibson–Thompson equation with memory, Appl. Anal., Volume 99 (2020) no. 15, pp. 2622-2640 | DOI | MR | Zbl

[38] Lizama, Carlos; Zamorano, Sebastián Controllability results for the Moore–Gibson–Thompson equation arising in nonlinear acoustics, J. Differ. Equations, Volume 266 (2019) no. 12, pp. 7813-7843 | DOI | MR | Zbl

[39] Marchand, Richard J.; McDevitt, Tim; Triggiani, Roberto An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., Volume 35 (2012) no. 15, pp. 1896-1929 | DOI | MR | Zbl

[40] Nikolić, Vanja; Kaltenbacher, Barbara Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy, Appl. Math. Optim., Volume 76 (2017) no. 2, pp. 261-301 | DOI | MR | Zbl

[41] Pellicer, Marta; Said-Houari, Belkacem Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., Volume 80 (2019) no. 2, pp. 447-478 | DOI | MR | Zbl

[42] Pellicer, Marta; Solá-Morales, Joan Optimal scalar products in the Moore–Gibson–Thompson equation, Evol. Equ. Control Theory, Volume 8 (2019) no. 1, pp. 203-220 | DOI | MR | Zbl

[43] Racke, Reinhard; Said-Houari, Belkacem Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation (2019) (submitted, available online at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-8ztzhsco3jj82, in the Konstanzer Schriften in Mathematik series, vol. 382, 29 pages, published by the KOPS - Universität Konstanz)

[44] Rauch, Jeffrey B.; Massey, Frank J. III Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Am. Math. Soc., Volume 189 (1974), pp. 303-318 | MR | Zbl

[45] Rudenko, Oleg V.; Soluyan, S. I. Theoretical Foundations of Nonlinear Acoustics, Studies in Soviet Science, Consultants Bureau, New York and London, 1977 (Translated from the Russian by Robert T. Beyer) | Zbl

[46] Sakamoto, Reiko Mixed problems for hyperbolic equations. I: Energy inequalities and II: Existence theorems with zero initial datas and energy inequalities with initials datas, J. Math. Kyoto Univ., Volume 10 (1970), p. 349-373, 403–417 | MR | Zbl

[47] Sakamoto, Reiko Hyperbolic boundary value problems, Cambridge University Press, 1982 (translated from the Japanese by Katsumi Miyahara) | Zbl

[48] Sova, Miroslav Cosine operator functions, Diss. Math., Volume 49 (1966), p. 47 | MR | Zbl

[49] Stokes, Georges An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag., Volume 1 (1851) no. 4, pp. 305-317 | DOI

[50] Triggiani, Roberto Sharp Interior and Boundary Regularity of the SMGTJ-equation with Dirichlet or Neumann boundary control, Semigroups of Operators – Theory and Applications (Banasiak, J.; Bobrowski, A.; Lachowicz, M.; Tomilov, Y., eds.) (Springer Proceedings in Mathematics & Statistics), Volume 325, Springer, 2020 (Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday) | DOI | MR | Zbl

Cité par Sources :