Harmonic analysis
Lipschitz Conditions in Damek–Ricci Spaces
Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 675-685.

In this paper we extend classical Titchmarsh theorems on the Fourier–Helgason transform of Lipschitz functions to the setting of L p -space on Damek–Ricci spaces. As consequences, quantitative Riemann–Lebesgue estimates are obtained and an integrability result for the Fourier–Helgason transform is developed extending ideas used by Titchmarsh in the one dimensional setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.211
Classification: 43A30, 42B10
El Ouadih, Salah 1; Daher, Radouan 2

1 Laboratory MC, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco
2 Laboratory TAGMD, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
@article{CRMATH_2021__359_6_675_0,
     author = {El Ouadih, Salah and Daher, Radouan},
     title = {Lipschitz {Conditions} in {Damek{\textendash}Ricci} {Spaces}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {675--685},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {6},
     year = {2021},
     doi = {10.5802/crmath.211},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.211/}
}
TY  - JOUR
AU  - El Ouadih, Salah
AU  - Daher, Radouan
TI  - Lipschitz Conditions in Damek–Ricci Spaces
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 675
EP  - 685
VL  - 359
IS  - 6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.211/
DO  - 10.5802/crmath.211
LA  - en
ID  - CRMATH_2021__359_6_675_0
ER  - 
%0 Journal Article
%A El Ouadih, Salah
%A Daher, Radouan
%T Lipschitz Conditions in Damek–Ricci Spaces
%J Comptes Rendus. Mathématique
%D 2021
%P 675-685
%V 359
%N 6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.211/
%R 10.5802/crmath.211
%G en
%F CRMATH_2021__359_6_675_0
El Ouadih, Salah; Daher, Radouan. Lipschitz Conditions in Damek–Ricci Spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 675-685. doi : 10.5802/crmath.211. http://www.numdam.org/articles/10.5802/crmath.211/

[1] Anker, Jean-Philippe; Damek, Ewa; Yacoub, Chokri Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1996) no. 4, pp. 643-679 | MR | Zbl

[2] Astengo, Francesca; Camporesi, Roberto; Di Blasio, Bianca The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Aust. Math. Soc., Volume 55 (1997) no. 3, pp. 405-424 | DOI | MR | Zbl

[3] Astengo, Francesca; Di Blasio, Bianca A Paley–Wiener theorem on NA harmonic spaces, Colloq. Math., Volume 80 (1999) no. 2, pp. 211-233 | DOI | MR | Zbl

[4] Bray, William O. Growth and integrability of Fourier transforms on Euclidean space, J. Fourier Anal. Appl., Volume 20 (2014) no. 6, pp. 1234-1256 | DOI | MR | Zbl

[5] Bray, William O.; Pinsky, Mark A. Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2265-2285 | DOI | MR | Zbl

[6] Bray, William O.; Pinsky, Mark A. Growth properties of the Fourier transform, Filomat, Volume 26 (2012) no. 4, pp. 755-760 | DOI | MR | Zbl

[7] Cowling, Michael; Dooley, Anthony; Korányi, Adam; Ricci, Fulvio An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., Volume 8 (1998) no. 2, pp. 199-237 | DOI | MR | Zbl

[8] Daher, Radouan; Delgado, Julio; Ruzhansky, Michael Titchmarsh theorems for Fourier transforms of Hölder-Lipschitz functions on compact homogeneous manifolds, Monatsh. Math., Volume 189 (2019) no. 1, pp. 23-49 | DOI | Zbl

[9] Daher, Radouan; El Hamma, Mohamed An analog of Titchmarsh’s theorem for the generalized Dunkl transform, J. Pseudo-Differ. Oper. Appl., Volume 7 (2016) no. 1, pp. 59-65 | DOI | MR | Zbl

[10] Daher, Radouan; El Hamma, Mohamed; El Ouadih, Salah An analog of Titchmarsh’s theorem for the generalized Fourier-Bessel Transform, Lobachevskii J. Math., Volume 37 (2016) no. 2, pp. 114-119 | DOI | MR

[11] Daher, Radouan; El Ouadih, Salah Best trigonometric approximation and Dini-Lipschitz classes, J. Pseudo-Differ. Oper. Appl., Volume 9 (2018) no. 4, pp. 903-912 | MR | Zbl

[12] Damek, Ewa; Ricci, Fulvio Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal., Volume 2 (1992) no. 3, pp. 213-248 | DOI | MR | Zbl

[13] El Hamma, Mohamed; Daher, Radouan Dini Lipschitz functions for the Dunkl transform in the space L 2 ( d ,w k (x)dx), Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249 | MR | Zbl

[14] El Ouadih, Salah; Daher, Radouan Characterization of Dini-Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces, Adv. Pure Appl. Math., Volume 7 (2016) no. 4, pp. 223-230 | MR | Zbl

[15] El Ouadih, Salah; Daher, Radouan Jacobi–Dunkl Dini Lipschitz functions in the space L p (,A α,β (x)dx), Appl. Math. E-Notes, Volume 16 (2016), pp. 88-98 | MR | Zbl

[16] El Ouadih, Salah; Daher, Radouan Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π], C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 3, pp. 318-324 | DOI | MR | Zbl

[17] Fahlaoui, Said; Boujeddaine, Mustapha; El Kassimi, Mohammed Fourier transforms of Dini-Lipschitz functions on rank 1 symmetric spaces, Mediterr. J. Math., Volume 13 (2016) no. 6, pp. 4401-4411 | DOI | MR

[18] Flensted-Jensen, Mogens; Koornwinder, Tom H. Jacobi functions: the addition formula and the positivity of the dual convolution structure, Ark. Mat., Volume 17 (1979), pp. 139-151 | DOI | MR | Zbl

[19] Koornwinder, Tom H. Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: Group theoretical aspects and applications (Mathematics and its Applications), Volume 18, Reidel Publishing Company, 1984, pp. 1-85 | Zbl

[20] Kumar, Pratyoosh; Ray, Swagato K.; Sarkar, Rudra P. The role of restriction theorems in harmonic analysis on harmonic NA groups, J. Funct. Anal., Volume 258 (2010) no. 7, pp. 2453-2482 | DOI | MR | Zbl

[21] Negzaoui, Selma Lipschitz conditions in Laguerre hypergroup, Mediterr. J. Math., Volume 14 (2017) no. 5, 191, 12 pages | MR | Zbl

[22] Platonov, Sergei S. Approximation of functions in the L 2 Metric on noncompact rank 1 symmetric spaces, Algebra Anal., Volume 11 (1999) no. 1, pp. 244-270

[23] Platonov, Sergei S. The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118 | DOI | Zbl

[24] Ray, Swagato K.; Sarkar, Rudra P. Fourier and Radon transform on harmonic NA groups, Trans. Am. Math. Soc., Volume 361 (2009) no. 8, pp. 4269-4297 | MR | Zbl

[25] Rouvière, François Espaces de Damek-Ricci, géométrie et analyse, Analyse sur les groupes de Lie et théorie des représentations (Séminaires et Congrès), Volume 7, Société Mathématique de France, 2003, pp. 45-100 | Zbl

[26] Titchmarsh, Edward C. Introduction to the theory of Fourier integrals, Clarendon Press, 1937 | Zbl

[27] Weiss, Mary; Zygmund, Antoni A note on smooth functions, Indag. Math., Volume 62 (1959), pp. 52-58 | DOI | Zbl

[28] Younis, Mohammed S. Fourier transforms in L p spaces, Ph. D. Thesis, Chelsea College (UK) (1970)

[29] Younis, Mohammed S. Fourier transforms of Lipschitz functions on compact groups, Ph. D. Thesis, McMaster University (Canada) (1974) | MR

[30] Younis, Mohammed S. Fourier transforms of Dini-Lipschitz functions, Int. J. Math. Math. Sci., Volume 9 (1986) no. 2, pp. 301-312 | DOI | MR | Zbl

Cited by Sources: