Algebra, Group Theory
GVZ-groups, Flat groups, and CM-Groups
Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 355-361.

We show that a group is a GVZ-group if and only if it is a flat group. We show that the nilpotence class of a GVZ-group is bounded by the number of distinct degrees of irreducible characters. We also show that certain CM-groups can be characterized as GVZ-groups whose irreducible character values lie in the prime field.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.185
Classification: 20C15
Burkett, Shawn T. 1; Lewis, Mark L. 1

1 Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, U.S.A.
@article{CRMATH_2021__359_3_355_0,
     author = {Burkett, Shawn T. and Lewis, Mark L.},
     title = {GVZ-groups, {Flat} groups, and {CM-Groups}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {355--361},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.185},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.185/}
}
TY  - JOUR
AU  - Burkett, Shawn T.
AU  - Lewis, Mark L.
TI  - GVZ-groups, Flat groups, and CM-Groups
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 355
EP  - 361
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.185/
DO  - 10.5802/crmath.185
LA  - en
ID  - CRMATH_2021__359_3_355_0
ER  - 
%0 Journal Article
%A Burkett, Shawn T.
%A Lewis, Mark L.
%T GVZ-groups, Flat groups, and CM-Groups
%J Comptes Rendus. Mathématique
%D 2021
%P 355-361
%V 359
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.185/
%R 10.5802/crmath.185
%G en
%F CRMATH_2021__359_3_355_0
Burkett, Shawn T.; Lewis, Mark L. GVZ-groups, Flat groups, and CM-Groups. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 355-361. doi : 10.5802/crmath.185. http://www.numdam.org/articles/10.5802/crmath.185/

[1] Berkovich, Yakov G. Degrees, kernels and quasikernels of monolithic characters, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3211-3219 | DOI | MR | Zbl

[2] Berkovich, Yakov G. Groups of prime power order. Vol. 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter, 2008 | MR | Zbl

[3] Berkovich, Yakov G.; Žmud’, Emmanuel Characters of Finite Groups. Part I., Translations of Mathematical Monographs, 172, American Mathematical Society, 1998 | DOI | MR

[4] Burkett, Shawn T.; Lewis, Mark L. A characterization of nested groups in terms of conjugacy classes, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 1, pp. 109-112 | MR | Zbl

[5] Camina, Alan R. Some conditions which almost characterize Frobenius groups, Isr. J. Math., Volume 31 (1978) no. 2, pp. 153-160 | DOI | MR | Zbl

[6] Chillag, David On Blichfeldt’s like congruences and other close characters–conjugacy classes analogs, Ischia group theory 2008 (Bianchi, Mariagrazia, ed.), World Scientific, 2009, pp. 42-55 | DOI | Zbl

[7] Chillag, David; Macdonald, Ian D. Generalized Frobenius groups, Isr. J. Math., Volume 47 (1984), pp. 111-122 | DOI | MR | Zbl

[8] Golikova, E. A.; Starostin, A. I. On Finite groups with uniquely generated normal subgroups, The subgroup structure of groups, Volume 172, Akad. Nauk SSSR Ural. Otdel., Sverdlovsk, 1988, pp. 45-54 | Zbl

[9] Guralnick, Robert; Navarro, Gabriel Squaring a conjugacy class and cosets of normal subgroups, Proc. Am. Math. Soc., Volume 144 (2016) no. 5, pp. 1939-1945 | DOI | MR | Zbl

[10] Isaacs, I. Martin Character theory of finite groups, Dover Publications, 1994 | MR | Zbl

[11] Isaacs, I. Martin; Moretó, Alexander The character degrees and nilpotence class of a p-group, J. Algebra, Volume 238 (2001) no. 2, pp. 827-842 | DOI | MR | Zbl

[12] Isaacs, I. Martin; Slattery, Michael C. Character degree sets that do not bound the class of a p-group, Proc. Am. Math. Soc., Volume 130 (2002) no. 9, pp. 2553-2558 | DOI | MR | Zbl

[13] Jaikin-Zapirain, Andrei; Moretó, Alexander Character degrees and nilpotence class of finite p-groups: an approach via pro-p groups, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 3907-3925 | DOI | MR | Zbl

[14] Khukhro, Evgenii I.; Mazurov, Viktor Danilovich The Kourovka notebook. Unsolved problems in group theory. 19th edition, Sobolev Institute of Mathematics. Russian Academy of Sciences. Siberian Branch, Novosibirsk, 2019

[15] Lewis, Mark L. Generalizing Camina groups and their character tables, J. Group Theory, Volume 12 (2009) no. 2, pp. 209-218 | MR | Zbl

[16] Lewis, Mark L. Camina groups, Camina pairs, and generalizations, Group theory and computation (Indian Statistical Institute Series), Springer, 2018, pp. 141-173 | DOI | MR

[17] Lewis, Mark L. Groups where the centers of the irreducible characters form a chain, Monatsh. Math., Volume 192 (2020) no. 2, pp. 371-399 | DOI | MR | Zbl

[18] Mlaiki, Nabil M. Camina triples, Can. Math. Bull., Volume 57 (2014) no. 1, pp. 125-131 | DOI | MR | Zbl

[19] Murai, Musafami Characterizations of p-nilpotent groups, Osaka J. Math., Volume 31 (1994) no. 1, pp. 1-8 | MR | Zbl

[20] Nenciu, Adriana Isomorphic character tables of nested GVZ-groups, J. Algebra Appl., Volume 11 (2012) no. 2, 1250033, 12 pages | MR | Zbl

[21] Nenciu, Adriana Nested GVZ-groups, J. Group Theory, Volume 19 (2016) no. 4, pp. 693-704 | Zbl

[22] Prevatali, A. Review of “Finite 2-groups in which distinct nonlinear irreducible characters have distinct kernels” (published in Math Reviews, MR3521172)

[23] Saeidi, Aemin Finite 2-groups in which distinct nonlinear irreducible characters have distinct kernels, Quaest. Math., Volume 39 (2016) no. 4, pp. 523-530 | DOI | MR | Zbl

[24] Tandra, Haryono; Moran, William Flatness conditions on finite p-groups, Commun. Algebra, Volume 32 (2004) no. 6, pp. 2215-2224 | DOI | MR | Zbl

[25] Žmud’, Emmanuel Finite groups with uniquely generated normal divisors, Mat. Sb., Volume 72 (1967), pp. 135-147 | MR | Zbl

[26] Žmud’, Emmanuel On the structure of finite groups with uniquely generated normal subgroups, Problems of group theory and homological algebra, No. 1 (Russian), Yaroslav. Gos. Univ., Yaroslavl, 1977, pp. 59-71 | Zbl

Cited by Sources: