Group theory
p-parts of co-degrees of irreducible characters
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 79-83.

For a character χ of a finite group G, the co-degree of χ is χ c (1)=[G:kerχ] χ(1). Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that p e+1 χ c (1), for every irreducible character χ of G, then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p 2 does not divide the co-degrees of their irreducible characters.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.158
Classification: 20C15, 20D10, 20D05
Bahramian, Roya 1; Ahanjideh, Neda 1

1 Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
@article{CRMATH_2021__359_1_79_0,
     author = {Bahramian, Roya and Ahanjideh, Neda},
     title = {$p$-parts of co-degrees of irreducible characters},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {79--83},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.158},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.158/}
}
TY  - JOUR
AU  - Bahramian, Roya
AU  - Ahanjideh, Neda
TI  - $p$-parts of co-degrees of irreducible characters
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 79
EP  - 83
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.158/
DO  - 10.5802/crmath.158
LA  - en
ID  - CRMATH_2021__359_1_79_0
ER  - 
%0 Journal Article
%A Bahramian, Roya
%A Ahanjideh, Neda
%T $p$-parts of co-degrees of irreducible characters
%J Comptes Rendus. Mathématique
%D 2021
%P 79-83
%V 359
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.158/
%R 10.5802/crmath.158
%G en
%F CRMATH_2021__359_1_79_0
Bahramian, Roya; Ahanjideh, Neda. $p$-parts of co-degrees of irreducible characters. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 79-83. doi : 10.5802/crmath.158. http://www.numdam.org/articles/10.5802/crmath.158/

[1] Ahanjideh, Neda The Fitting subgroup, p-length, derived length and character table (2020) (to appear in Math. Nachr., https://www.doi.org/10.1002/mana.202000057)

[2] Bahramian, Roya; Ahanjideh, Neda p-divisibility of co-degrees of irreducible characters (2020) (to appear in Bull. Aust. Math. Soc., https://www.doi.org/10.1017/S0004972720000295) | DOI

[3] Du, Ni; Lewis, Mark L. Codegrees and nilpotence class of p-groups, J. Group Theory, Volume 19 (2016) no. 4, pp. 561-568 | MR | Zbl

[4] Giannelli, Eugenio; Rizo, Noelia; Schaeffer Fry, A. A. Groups with few p -character degrees, J. Pure Appl. Algebra, Volume 224 (2020) no. 8, 106338, 15 pages | MR | Zbl

[5] Huppert, Bertram Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer, 1967 | MR | Zbl

[6] Isaacs, I. Martin Character theory of finite groups, Dover Publications, 1994 | MR | Zbl

[7] Kleidman, Peter; Liebeck, Martin The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, London Mathematical Society, 1990 | MR | Zbl

[8] Lewis, Mark L.; Navarro, Gabriel; Tiep, Pham Huu; Tong-Viet, Hung P. p-parts of character degrees, J. Lond. Math. Soc., Volume 92 (2015) no. 2, pp. 483-497 | DOI | MR | Zbl

[9] Lewis, Mark L.; Navarro, Gabriel; Wolf, Thomas R. p-parts of character degrees and the index of the Fitting subgroup, J. Algebra, Volume 411 (2014), pp. 182-190 | DOI | MR | Zbl

[10] Qian, Guohua A note on p-parts of character degrees, Bull. Lond. Math. Soc., Volume 50 (2018) no. 4, pp. 663-666 | DOI | MR | Zbl

[11] Qian, Guohua; Wang, Yanming; Wei, Huaquan Co-degrees of irreducible characters in finite groups, J. Algebra, Volume 312 (2007) no. 2, pp. 946-955 | DOI | MR | Zbl

Cited by Sources: