Comptes Rendus

Mathématique

Roya Bahramian and Neda Ahanjideh
p-parts of co-degrees of irreducible characters

Volume 359, issue 1 (2021), p. 79-83
Published online: 15 February 2021
https://doi.org/10.5802/crmath. 158
(σ) Br \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

p-parts of co-degrees of irreducible characters

Roya Bahramian ${ }^{a}$ and Neda Ahanjideh ${ }^{*, a}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
E-mails: roya.bahramian98@gmail.com, ahanjideh.neda@sku.ac.ir

Abstract

For a character χ of a finite group G, the co-degree of χ is $\chi^{c}(1)=\frac{[G \text { :ker } \chi]}{\chi(1)}$. Let p be a prime and let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that $p^{e+1} \nmid \chi^{c}(1)$, for every irreducible character χ of G, then the p-length of G is not greater than e. Next, we study the finite groups satisfying the condition that p^{2} does not divide the co-degrees of their irreducible characters.

Mathematical subject classification (2010). 20C15, 20D10, 20D05.
Manuscript received 22nd April 2020, revised and accepted 24th November 2020.

1. Introduction and preliminaries

In this paper, G is a finite group, p is a prime number and e is a positive integer. Let $Z(G)$ be the center of G and let $O_{p}(G)$ and $O_{p^{\prime}}(G)$ be the largest normal p-subgroup and the largest normal p^{\prime}-subgroup of G, respectively. Also, $O^{p^{\prime}}(G)$ is the largest normal subgroup of G whose index in G is co-prime to p. For a p-solvable group G, the p-length of G, denoted by $\ell_{p}(G)$, is the minimum possible number of factors that are p-groups in any normal series of G which every factor is either a p-group or a p^{\prime}-group. Let $\operatorname{Irr}(G)$ denote the set of (complex) irreducible characters of G. For a normal subgroup N of G and a character θ of N, let $I_{G}(\theta)$ denote the inertia group of θ in G and let $\operatorname{Irr}(G \mid \theta)$ be the set of the irreducible constituents of the induced character θ^{G}. Also, we use e_{p} to show the p-part of e. For a character χ of G, the number $\chi^{c}(1)=\frac{[G: \text { ker } \chi]}{\chi(1)}$ is called the co-degree of χ (see [11]). Set $\operatorname{Codeg}(G)=\left\{\chi^{c}(1): \chi \in \operatorname{Irr}(G)\right\}$. In [1-3,11], some properties of the co-degrees of irreducible characters of finite groups have been studied.

In [1], it has been proved that the p-length of a finite p-solvable group is not greater than the number of the distinct co-degrees of its irreducible characters which are divisible by p. In this paper, we prove that:
Theorem 1. If G is a p-solvable group and $p^{e+1} \nmid \chi^{c}(1)$, for every $\chi \in \operatorname{Irr}(G)$, then $\ell_{p}(G) \leq e$.
In [8-10], it has been shown that if $p^{2} \nmid \chi(1)$, for every $\chi \in \operatorname{Irr}(G)$, then $\left[G: O_{p}(G)\right] p \leq p^{3}$. In this paper, we also prove that:

[^0]Theorem 2. Let G be a non- p-solvable group. If $\chi^{c}(1)_{p} \leq p$, for every $\chi \in \operatorname{Irr}(G)$, then $|G|_{p}=p$.
Corollary 3. If $\chi^{c}(1)_{p} \leq p$, for every $\chi \in \operatorname{Irr}(G)$, then the Sylow p-subgroups of G are elementary abelian p-groups.

In Examples 9, 10 and 11, we show that in Theorem 2, "non- p-solvability" cannot be substituted with "non-solvability" and in Corollary 3, there is not necessarily an upper bound for $|G|_{p}$ or $\left|G / O_{p}(G)\right|_{p}$.

2. Proofs of the main results

We first state a lemma that will be used frequently in this paper without explicit reference.
Lemma 4 (cf. [11, Lemma 2.1]). Let N be a normal subgroup of G. Then, $\operatorname{Codeg}(G / N) \subseteq$ $\operatorname{Codeg}(G)$. Also, if $\psi \in \operatorname{Irr}(N)$, then $\psi^{c}(1) \mid \chi^{c}(1)$, for every $\chi \in \operatorname{Irr}(G \mid \psi)$.

Lemma 5. Let S be a non-abelian simple group.
(i) If p is a prime divisor of the order of the Schur multiplier of S, then $|S|_{p} \geq p^{2}$.
(ii) If p is a prime divisor of $|\operatorname{Out}(S)|$ such that p divides $|S|$, then $|S|_{p} \geq p^{2}$.

Proof. Since S is a non-abelian simple group, $|S|_{2} \geq 4$. So, the lemma follows when $p=2$. Next, assume that $p \geq 3$. If p is a prime divisor of the order of the Schur multiplier of S, then since $p \geq 3$, [7, Section 5.1] shows that $S \cong P S L_{n}(q), p \mid q-1$ and $p\left|n, S \cong P S U_{n}(q), p\right| q+1$ and $p \mid n$,

$$
S \in\left\{P S L_{2}(9), A l t_{7}, P S U_{4}(3), G_{2}(3), J_{3}, M_{22}, F i_{22}, M c l, S u z, B_{3}(3),{ }^{2} E_{6}(4), F i_{24}^{\prime}, O^{\prime} N\right\}
$$

(under isomorphism) and $p=3, S \cong E_{6}(q)$ and $p=3 \mid q-1$ or $S \cong{ }^{2} E_{6}(q)$ and $p=3 \mid q+1$. Thus, we can check at once that $|S|_{p} \geq p^{2}$, as desired in (i). Next, let p be a prime divisor of $|\operatorname{Out}(S)|$ and $|S|$. Then, [8, Lemma 3.1] shows that $|S|_{p}>|\operatorname{Out}(S)|_{p} \geq p$. Thus, $|S|_{p} \geq p^{2}$, as wanted.

In order to prove the main results, we need to prove the following propositions:
Proposition 6. Let N be a minimal normal subgroup of G.
(i) If N is abelian and $\chi \in \operatorname{Irr}(G)$ such that $N \not \leq \operatorname{ker} \chi$, then $|N|$ divides $\chi^{c}(1)$.
(ii) If $\left.p\left||N|\right.$ and $\chi^{c}(1)_{p} \leq p$, for every $\chi \in \operatorname{Irr}(G)$, then $| N\right|_{p}=p$ and N is a simple group.

Proof. (i). Since N is a minimal normal subgroup of G and $N \neq N \cap \operatorname{ker} \chi \unlhd G, N \cap \operatorname{ker} \chi=$ $\{1\}$. So, $N \cong N \operatorname{ker} \chi / \operatorname{ker} \chi$ is an abelian normal subgroup of $G / \operatorname{ker} \chi$. By Ito's theorem (see [6 , Theorem 6.15]), $\chi(1) \left\lvert\,\left[\frac{G}{\operatorname{ker} \chi}: \frac{N \operatorname{ker} \chi}{\operatorname{ker} \chi}\right]=[G: N \operatorname{ker} \chi]\right.$. Thus, $|N| \mid \chi^{c}(1)$, as desired in (i).
(ii). First suppose that $N \leq O_{p}(G), \theta \in \operatorname{Irr}(N)-\left\{1_{N}\right\}$ and $\chi \in \operatorname{Irr}(G \mid \theta)$. Then, $N \neq \operatorname{ker} \chi$. So, $|N| \mid \chi^{c}(1)$, by (i). Thus, $|N|_{p} \leq \chi^{c}(1)_{p} \leq p$. However, N is a p-group. Hence, $|N|=p$, as desired. Now, let N be non-abelian. Then, $N=S_{1} \times \cdots \times S_{t}$, where S_{1}, \ldots, S_{t} are isomorphic non-abelian simple groups. For every $i \in\{1, \ldots, t\}, p \|\left|S_{i}\right|$ and there exists $\theta_{i} \in \operatorname{Irr}\left(S_{i}\right)-\left\{1_{S_{i}}\right\}$ such that $p \nmid \theta_{i}(1)$, by [6, Corollary 12.2]. Set $\theta=\theta_{1} \times \cdots \times \theta_{t}$ and let $\chi \in \operatorname{Irr}(G \mid \theta)$. Then, $\theta \in \operatorname{Irr}(N), \operatorname{ker} \theta=\{1\}$ and $p \nmid \theta(1)$. Thus, $|N|_{p} \mid \theta^{c}(1)$, hence $|N|_{p} \mid \chi^{c}(1)$. So, $|N|_{p} \leq p$. Consequently, $t=1$ and N is a nonabelian simple group.

Proposition 7. Let $N \leq Z(G)$ and G / N be a non-abelian simple group. If p divides $|N|$ and $|G / N|$, then there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi^{c}(1)_{p} \geq p^{2}$.

Proof. Since $N \leq Z(G), N$ is abelian. Hence, N has a maximal normal subgroup M such that $|N / M|=p$. However, $M \leq N \leq Z(G)$. Thus, $M \unlhd G$ and $N / M \leq Z(G / M)$. If we can show that there exists $\chi \in \operatorname{Irr}(G / M)$ such that $\chi^{c}(1)_{p} \geq p^{2}$, then Lemma 4 completes the proof. So, without loss of generality, assume that $|N|=p$. Then, $G^{\prime} \cap N=\{1\}$ or N, where G^{\prime} denotes the derived
subgroup of G. Since G / N is a non-abelian simple group, $G^{\prime} N=G$. Thus, either $G^{\prime} \times N=G$ and $G^{\prime} \cong G / N$ or $N \leq G^{\prime}=G$. In the former case, there exists $\theta \in \operatorname{Irr}\left(G^{\prime}\right)-\left\{1_{G^{\prime}}\right\}$ such that $p \nmid \theta(1)$, by [6, Corollary 12.2]. Set $\chi=\theta \times \varphi$, for some $\varphi \in \operatorname{Irr}(N)-\left\{1_{N}\right\}$. Then, $\chi \in \operatorname{Irr}(G), p \nmid \chi(1)$ and $\operatorname{ker} \chi=\{1\}$. Thus, $|G|_{p}$ divides $\chi^{c}(1)_{p}$. Hence, $\chi^{c}(1)_{p} \geq p^{2}$, as desired. In the latter case, G is a quasi-simple group with $Z(G)=N$. Consequently, $|N|$ divides $|M(G / N)|$, the order of the Schur multiplier of G / N. Therefore, $p||M(G / N)|$. It follows from Lemma 5 (i) that $| G /\left.N\right|_{p} \geq p^{2}$. Since G / N is a non-abelian simple group, there exists $\psi \in \operatorname{Irr}(G / N)$ such that $p \nmid \psi(1)$ and $\operatorname{ker} \psi=\{1\}$, by [6, Corollary 12.2]. So, $|G / N|_{p}$ divides $\psi^{c}(1)$. Consequently, $\psi^{c}(1)_{p} \geq p^{2}$. Hence, the proposition follows because $\operatorname{Codeg}(G / N) \subseteq \operatorname{Codeg}(G)$.
Proof of Theorem 1. Let G be a minimal counterexample. Then, since the hypothesis is inherited by quotients and normal subgroups and $\ell_{p}\left(G / O_{p^{\prime}}(G)\right)=\ell_{p}(G)=\ell_{p}\left(O^{p^{\prime}}(G)\right)$, we can assume that $O_{p^{\prime}}(G)=\{1\}$ and $O^{p^{\prime}}(G)=G$. Thus, every minimal normal subgroup M of G is a p group and $\ell_{p}(G / M) \leq e$. Suppose that M and W are two distinct minimal normal subgroups of G. Then, since $M \cap W=\{1\}, \ell_{p}(G / W) \leq e$ and $\ell_{p}(G / M) \leq e, \ell_{p}(G)=\ell_{p}(G /(M \cap W)) \leq$ $\max \left\{\ell_{p}(G / M), \ell_{p}(G / W)\right\} \leq e$, by [5, VI. 6.4]. This is a contradiction. Now let M be the unique minimal normal subgroup of G. Let $l=\ell_{p}(G / M)$ and define a normal series $\{1\}=P_{0}(G / M) \unlhd$ $M_{0}(G / M) \unlhd P_{1}(G / M) \unlhd M_{1}(G / M) \unlhd \cdots \unlhd P_{l}(G / M) \unlhd M_{l}(G / M)=G / M$ of G / M such that $\frac{M_{i}(G / M)}{P_{i}(G / M)}=$ $O_{p^{\prime}}\left(\frac{G / M}{P_{i}(G / M)}\right)$ and $\frac{P_{i}(G / M)}{M_{i-1}(G / M)}=O_{p}\left(\frac{G / M}{M_{i-1}(G / M)}\right)$. Set $P_{i} / M=P_{i}(G / M)$ and $M_{i} / M=M_{i}(G / M)$. We claim that $O_{p^{\prime}}(G / M) \neq\{1\}$. If not, $M_{0}=P_{0}$. Thus, $P_{1}=O_{p}(G)$ and $\{1\} \unlhd P_{1} \unlhd M_{1} \unlhd \cdots \unlhd P_{l} \unlhd M_{l}=G$ is a normal series of G such that $\frac{M_{i}}{P_{i}}=O_{p^{\prime}}\left(\frac{G}{P_{i}}\right)$ and $\frac{P_{i}}{M_{i-1}}=O_{p}\left(\frac{G}{M_{i-1}}\right)$, for every $1 \leq i \leq l$. Therefore, $\ell_{p}(G)=l=\ell_{p}(G / M) \leq e$. This is a contradiction. Thus, $O_{p^{\prime}}(G / M) \neq\{1\}$. Set $N / M=O_{p^{\prime}}(G / M)$. By Schur-Zassenhaus theorem, N has a p-complement L. Then, $G=N N_{G}(L)=M N_{G}(L)$. Since M is abelian, $M \cap N_{G}(L) \unlhd G$. However, M is a minimal normal subgroup of G and $O_{p^{\prime}}(G)=\{1\}$. Thus, we can check that $M \cap N_{G}(L)=\{1\}$. So, every $\lambda \in \operatorname{Irr}(M)$ extends to $I_{G}(\lambda)$, by $[6$, Exercise 6.18]. Let $1_{M}=\lambda_{1}, \ldots, \lambda_{t}$ be the representatives of the action of G on $\operatorname{Irr}(M)$. If O_{i} is the G orbit of λ_{i}, then $1+\Sigma_{i=2}^{t}\left|O_{i}\right| \lambda_{i}(1)^{2}=\Sigma_{\lambda \in \operatorname{Irr}(M)} \lambda(1)^{2}=|M| \equiv{ }_{p} 0$. Hence, there exists $i>1$ such that $p \nmid\left|O_{i}\right|=\left[G: I_{G}\left(\lambda_{i}\right)\right]$. So, $I_{G}\left(\lambda_{i}\right)$ contains a Sylow p-subgroup P of G. Since λ_{i} extends to $I_{G}\left(\lambda_{i}\right)$, there exists $\widehat{\lambda}_{i} \in \operatorname{Irr}\left(I_{G}\left(\lambda_{i}\right)\right)$ such that $\hat{\lambda}_{i M}=\lambda_{i}$. Set $\chi=\widehat{\lambda}_{i}^{G}$. By Clifford theory (see [6, Theorem 6.4]), $\chi \in \operatorname{Irr}(G)$ and $\chi(1)=\left[G: I_{G}\left(\lambda_{i}\right)\right]$. Also, $\operatorname{ker} \chi \cap M$ is a normal subgroup of G and M is a minimal normal subgroup of G. Thus, either $\operatorname{ker} \chi \cap M=M$ or $\operatorname{ker} \chi \cap M=\{1\}$. In the former case, $M \leq \operatorname{ker} \chi$, so χ_{M} is trivial and $\lambda_{i}=\lambda_{1}$, which is a contradiction. Therefore, $\operatorname{ker} \chi \cap M=\{1\}$. Consequently, $\operatorname{ker} \chi=\{1\}$, because M is the unique minimal normal subgroup of G. Hence, $\chi^{c}(1)=\left|I_{G}\left(\lambda_{i}\right)\right|$, which is divisible by $|P|$. So, $|G| p \leq p^{e}$. Therefore, $\ell_{p}(G) \leq e$, which is a contradiction. Now, the proof is complete.

Note that in some parts of the proof of Theorem 1, we follow the ideas in the proof of [4, Theorem 2.3].

Proof of Theorem 2. First, let G be a non- p-solvable group of the minimal order such that $|G|_{p} \geq p^{2}$. Since the hypothesis is inherited by quotients and normal subgroups, we may assume that $O_{p^{\prime}}(G)=\{1\}$ and $O^{p^{\prime}}(G)=G$. We continue the proof in the following cases:

Case a. Assume that $O_{p}(G) \neq\{1\}$. Let $N \leq O_{p}(G)$ be a minimal normal subgroup of G. Then, $|N|=p$, by Proposition 6 (ii). However, G / N is not p-solvable and $\operatorname{Codeg}(G / N) \subseteq \operatorname{Codeg}(G)$. So, $|G / N|_{p}=p$, by minimality of G. Hence, $|G|_{p}=p^{2}$. Since $|N|=p$ and $G / C_{G}(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$, we have $O^{p^{\prime}}(G) \leq C_{G}(N)$. However, $O^{p^{\prime}}(G)=G$. So, $C_{G}(N)=G$. Consequently, $N \leq Z(G)$. Set $\bar{G}=G / N$ and let $M / N=\bar{M}$ be a minimal normal subgroup of \bar{G}. If $\bar{M} \leq O_{p^{\prime}}(\bar{G})$, then $|N|$ and $|M / N|$ are co-prime. By Schur-Zassenhaus theorem, M has a p-complement H. Since $N \leq Z(G), M=H \times N$. Thus, $\bar{M}=H N / N \cong H /(H \cap N)=H=O_{p^{\prime}}(M) \leq O_{p^{\prime}}(G)=\{1\}$, which is a contradiction. Now let $O_{p^{\prime}}(\bar{G})=\{1\}$. Then, since \bar{G} is not p-solvable and $|\bar{G}|_{p}=p$, we get that \bar{M}
is the unique minimal normal subgroup of \bar{G} and $|\bar{M}|_{p}=p$. So, \bar{M} is a non-abelian simple group. By Proposition 7, there exists $\theta \in \operatorname{Irr}(M)$ such that $\theta^{c}(1)_{p} \geq p^{2}$. Therefore, $\chi^{c}(1)_{p} \geq p^{2}$, for every $\chi \in \operatorname{Irr}(G \mid \theta)$. This is a contradiction.
Case b. Let $O_{p}(G)=\{1\}$. Since $O_{p^{\prime}}(G)=\{1\}$, every minimal normal subgroup of G is a non-abelian simple group of order divisible by p, by Proposition 6 (ii). If G has two distinct minimal normal subgroups M_{1} and M_{2}, then $p \|\left|M_{1}\right|,\left|M_{2}\right|$. However, $|G| p=p^{2}$ and $O^{p^{\prime}}(G)=G$. Thus, $G=M_{1} \times M_{2}$. So, there exists $\theta=\theta_{1} \times \theta_{2} \in \operatorname{Irr}\left(M_{1}\right) \times \operatorname{Irr}\left(M_{2}\right)=\operatorname{Irr}(G)$ such that $p \nmid \theta(1)$ and $\operatorname{ker} \theta=\{1\}$. Therefore, $p^{2}=|G|_{p} \mid \theta^{c}(1)$, which is a contradiction. Next let G have the unique minimal normal subgroup, say M. Then, $C_{G}(M)=\{1\}$. Consequently, $G \lesssim \operatorname{Aut}(M)$. By Proposition 6 (ii), $|M|_{p}=p$. Thus, $p \| G / M \mid$, hence $p \| \operatorname{Out}(M) \mid$. Lemma 5 (ii) shows that $|M|_{p} \geq p^{2}$. This is a contradiction.

So, $|G|_{p}=p$, as desired.
Remark 8. If $\chi^{c}(1)_{p} \leq p$, for every irreducible character χ of G, then by Theorems 1 and 2, either $|G|_{p}=p$ or G is a p-solvable group of p-length one.
Proof of Corollary 3. If G is non- p-solvable, then $|G|_{p}=p$, by Theorem 2. Thus, the corollary follows. Now, let G be p-solvable. By Theorem 1, G has p-length one. Let $L=O_{p^{\prime}}(G)$ and $K / L=$ $O_{p}(G / L)$. Then, K / L is isomorphic to a Sylow p-subgroup of G. By Lemma 4, $\operatorname{Codeg}(K / L)=\{1, p\}$. Thus, [3, Lemma 2.4] forces K / L to be elementary abelian, as desired.

Example 9. Assume that $G=L_{1} \times \cdots \times L_{t}$, where L_{1}, \ldots, L_{t} are Symmetric groups of degrees 3 . Let $\chi \in \operatorname{Irr}(G)-\left\{1_{G}\right\}$. Then, there exist $\theta_{1} \in \operatorname{Irr}\left(L_{1}\right), \ldots, \theta_{t} \in \operatorname{Irr}\left(L_{t}\right)$ such that $\chi=\theta_{1} \times \cdots \times \theta_{t}$. Set $\Omega_{1}=\left\{1 \leq i \leq t: \theta_{i}(1)=2\right\}$ and $\Omega_{2}=\left\{1 \leq i \leq t: i \notin \Omega_{1}\right\}$. Let $\chi_{1}=\Pi_{i \in \Omega_{1}} \theta_{i}$ and $\chi_{2}=\Pi_{i \in \Omega_{2}} \theta_{i}$. If $\chi=\chi_{1}$, then $\chi(1)=|G|_{2}$. Hence, $\chi^{c}(1)_{2}=1$. Otherwise, fix $H=\Pi_{i \in \Omega_{2}} L_{i}$. Then, H / H^{\prime} is an elementary abelian 2-group of order $|H|_{2}$ and $\chi_{2} \in \operatorname{Irr}\left(H / H^{\prime}\right)$. Therefore, $\left|\operatorname{ker} \chi_{2}\right|_{2}=|H|_{2} / 2$, by [3, Lemma 2.4]. Since, $\chi=\chi_{1} \times \chi_{2},\left(\Pi_{i \in \Omega_{1}} 1_{L_{i}}\right) \times \operatorname{ker} \chi_{2} \leq \operatorname{ker} \chi$. Thus, $2^{\left|\Omega_{2}\right|-1} \leq|\operatorname{ker} \chi|$. Also, $\chi(1)=2^{\left|\Omega_{1}\right|}$. Therefore, $\chi^{c}(1)_{2} \leq 2$. This example shows that in Corollary $3,\left|G / O_{p}(G)\right|_{p}$ is not necessarily bounded.
Example 10. Let K be an elementary abelian 3 -group of order 3^{n}. Then, the cyclic group $P=\langle z\rangle$ of order 2 acts on K by $x^{z}=x^{2}$, for every $x \in K$. Let G be a semi-direct product $K \rtimes P$ and let $\chi \in \operatorname{Irr}(G)-\left\{1_{G}\right\}$. If $K \leq \operatorname{ker} \chi$, then $\chi^{c}(1)=2$. Otherwise, there exists $\theta \in \operatorname{Irr}(K)-\left\{1_{K}\right\}$ such that $\left\langle\chi_{K}, \theta\right\rangle \neq 0$. By [3, Lemma 2.4], $|\operatorname{ker} \theta|=3^{n-1}$. It is easy to check that $\operatorname{ker} \theta \unlhd G$. Therefore, $\operatorname{ker} \theta \leq \operatorname{ker} \chi$. Thus, $\chi^{c}(1)_{3}| | G /\left.\operatorname{ker} \theta\right|_{3}=3$. Consequently, $\chi^{c}(1)_{3} \leq 3$. This example shows that in Corollary $3,\left|O_{p}(G)\right|$ and $|G / Z(G)|_{p}$ are not necessarily bounded.
Example 11. Let $p \neq 2$ and S be a non-abelian simple group such that $p \nmid|S|$. Suppose that P is an elementary abelian p-group of order p^{n} and $G=P \times S$. For every $\chi \in \operatorname{Irr}(G)$, we can see that $p^{n-1}| | \operatorname{ker} \chi \mid$, so $\chi^{c}(1)_{p} \mid p^{n} / p^{n-1}=p$. This example shows that in Theorem 2, "non- p-solvability" cannot be substituted with "non-solvability".

Acknowledgments

The authors would like to thank the referees for careful reading and many constructive comments, which substantially helped to improve the quality of the paper.

References

[^1][3] N. Du, M. L. Lewis, "Codegrees and nilpotence class of p-groups", J. Group Theory 19 (2016), no. 4, p. 561-568.
[4] E. Giannelli, N. Rizo, A. A. Schaeffer Fry, "Groups with few p^{\prime}-character degrees", J. Pure Appl. Algebra 224 (2020), no. 8, article no. 106338 (15 pages).
[5] B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, 1967.
[6] I. M. Isaacs, Character theory of finite groups, Dover Publications, 1994.
[7] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, London Mathematical Society, 1990.
[8] M. L. Lewis, G. Navarro, P. H. Tiep, H. P. Tong-Viet, " p-parts of character degrees", J. Lond. Math. Soc. 92 (2015), no. 2, p. 483-497.
[9] M. L. Lewis, G. Navarro, T. R. Wolf, "p-parts of character degrees and the index of the Fitting subgroup", J. Algebra 411 (2014), p. 182-190.
[10] G. Qian, "A note on p-parts of character degrees", Bull. Lond. Math. Soc. 50 (2018), no. 4, p. 663-666.
[11] G. Qian, Y. Wang, H. Wei, "Co-degrees of irreducible characters in finite groups", J. Algebra 312 (2007), no. 2, p. 946955.

[^0]: * Corresponding author.

[^1]: [1] N. Ahanjideh, "The Fitting subgroup, p-length, derived length and character table", to appear in Math. Nachr., https://www.doi.org/10.1002/mana.202000057, 2020.
 [2] R. Bahramian, N. Ahanjideh, "p-divisibility of co-degrees of irreducible characters", to appear in Bull. Aust. Math. Soc., https://www.doi.org/10.1017/S0004972720000295, 2020.

