

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Roya Bahramian and Neda Ahanjideh

p-parts of co-degrees of irreducible characters

Volume 359, issue 1 (2021), p. 79-83

Published online: 15 February 2021

https://doi.org/10.5802/crmath.158

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Group theory / Théorie des groupes

p-parts of co-degrees of irreducible characters

Roya Bahramian^{*a*} and Neda Ahanjideh^{*, *a*}

^{*a*} Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran *E-mails*: roya.bahramian98@gmail.com, ahanjideh.neda@sku.ac.ir

Abstract. For a character χ of a finite group *G*, the co-degree of χ is $\chi^{c}(1) = \frac{[G:\ker\chi]}{\chi(1)}$. Let *p* be a prime and let *e* be a positive integer. In this paper, we first show that if *G* is a *p*-solvable group such that $p^{e+1} \nmid \chi^{c}(1)$, for every irreducible character χ of *G*, then the *p*-length of *G* is not greater than *e*. Next, we study the finite groups satisfying the condition that p^{2} does not divide the co-degrees of their irreducible characters. **Mathematical subject classification (2010).** 20C15, 20D10, 20D05.

Manuscript received 22nd April 2020, revised and accepted 24th November 2020.

1. Introduction and preliminaries

In this paper, *G* is a finite group, *p* is a prime number and *e* is a positive integer. Let *Z*(*G*) be the center of *G* and let $O_p(G)$ and $O_{p'}(G)$ be the largest normal *p*-subgroup and the largest normal *p'*-subgroup of *G*, respectively. Also, $O^{p'}(G)$ is the largest normal subgroup of *G* whose index in *G* is co-prime to *p*. For a *p*-solvable group *G*, the *p*-length of *G*, denoted by $\ell_p(G)$, is the minimum possible number of factors that are *p*-groups in any normal series of *G* which every factor is either a *p*-group or a *p'*-group. Let Irr(G) denote the set of (complex) irreducible characters of *G*. For a normal subgroup *N* of *G* and a character θ of *N*, let $I_G(\theta)$ denote the inertia group of θ in *G* and let $Irr(G|\theta)$ be the set of the irreducible constituents of the induced character θ^G . Also, we use e_p to show the *p*-part of *e*. For a character χ of *G*, the number $\chi^c(1) = \frac{[G:\ker\chi]}{\chi(1)}$ is called the co-degree of χ (see [11]). Set Codeg(*G*) = { $\chi^c(1) : \chi \in Irr(G)$ }. In [1–3, 11], some properties of the co-degrees of irreducible characters of finite groups have been studied.

In [1], it has been proved that the p-length of a finite p-solvable group is not greater than the number of the distinct co-degrees of its irreducible characters which are divisible by p. In this paper, we prove that:

Theorem 1. If G is a p-solvable group and $p^{e+1} \nmid \chi^{c}(1)$, for every $\chi \in Irr(G)$, then $\ell_{p}(G) \leq e$.

In [8–10], it has been shown that if $p^2 \nmid \chi(1)$, for every $\chi \in Irr(G)$, then $[G : O_p(G)]_p \le p^3$. In this paper, we also prove that:

^{*} Corresponding author.

Theorem 2. Let *G* be a non-*p*-solvable group. If $\chi^c(1)_p \le p$, for every $\chi \in Irr(G)$, then $|G|_p = p$.

Corollary 3. If $\chi^c(1)_p \leq p$, for every $\chi \in Irr(G)$, then the Sylow *p*-subgroups of *G* are elementary abelian *p*-groups.

In Examples 9, 10 and 11, we show that in Theorem 2, "non-*p*-solvability" cannot be substituted with "non-solvability" and in Corollary 3, there is not necessarily an upper bound for $|G|_p$ or $|G/O_p(G)|_p$.

2. Proofs of the main results

We first state a lemma that will be used frequently in this paper without explicit reference.

Lemma 4 (cf. [11, Lemma 2.1]). Let N be a normal subgroup of G. Then, $Codeg(G/N) \subseteq Codeg(G)$. Also, if $\psi \in Irr(N)$, then $\psi^c(1) \mid \chi^c(1)$, for every $\chi \in Irr(G|\psi)$.

Lemma 5. Let S be a non-abelian simple group.

- (i) If p is a prime divisor of the order of the Schur multiplier of S, then $|S|_p \ge p^2$.
- (ii) If p is a prime divisor of |Out(S)| such that p divides |S|, then $|S|_p \ge p^2$.

Proof. Since *S* is a non-abelian simple group, $|S|_2 \ge 4$. So, the lemma follows when p = 2. Next, assume that $p \ge 3$. If *p* is a prime divisor of the order of the Schur multiplier of *S*, then since $p \ge 3$, [7, Section 5.1] shows that $S \cong PSL_n(q)$, $p \mid q-1$ and $p \mid n$, $S \cong PSU_n(q)$, $p \mid q+1$ and $p \mid n$,

$$S \in \{PSL_2(9), Alt_7, PSU_4(3), G_2(3), J_3, M_{22}, Fi_{22}, Mcl, Suz, B_3(3), {}^2E_6(4), Fi'_{24}, O'N\}$$

(under isomorphism) and p = 3, $S \cong E_6(q)$ and p = 3 | q - 1 or $S \cong ^2E_6(q)$ and p = 3 | q + 1. Thus, we can check at once that $|S|_p \ge p^2$, as desired in (i). Next, let p be a prime divisor of |Out(S)| and |S|. Then, [8, Lemma 3.1] shows that $|S|_p > |Out(S)|_p \ge p$. Thus, $|S|_p \ge p^2$, as wanted.

In order to prove the main results, we need to prove the following propositions:

Proposition 6. Let N be a minimal normal subgroup of G.

- (i) If N is abelian and $\chi \in Irr(G)$ such that $N \not\leq \ker \chi$, then |N| divides $\chi^{c}(1)$.
- (ii) If p | |N| and $\chi^{c}(1)_{p} \leq p$, for every $\chi \in Irr(G)$, then $|N|_{p} = p$ and N is a simple group.

Proof. (i). Since *N* is a minimal normal subgroup of *G* and $N \neq N \cap \ker \chi \trianglelefteq G$, $N \cap \ker \chi = \{1\}$. So, $N \cong N \ker \chi / \ker \chi$ is an abelian normal subgroup of $G / \ker \chi$. By Ito's theorem (see [6, Theorem 6.15]), $\chi(1) \mid \left[\frac{G}{\ker \chi}: \frac{N \ker \chi}{\ker \chi}\right] = [G: N \ker \chi]$. Thus, $|N| \mid \chi^{c}(1)$, as desired in (i).

(ii). First suppose that $N \leq O_p(G)$, $\theta \in \operatorname{Irr}(N) - \{1_N\}$ and $\chi \in \operatorname{Irr}(G|\theta)$. Then, $N \not\leq \ker \chi$. So, $|N| \mid \chi^c(1)$, by (i). Thus, $|N|_p \leq \chi^c(1)_p \leq p$. However, N is a p-group. Hence, |N| = p, as desired. Now, let N be non-abelian. Then, $N = S_1 \times \cdots \times S_t$, where S_1, \ldots, S_t are isomorphic non-abelian simple groups. For every $i \in \{1, \ldots, t\}$, $p \mid |S_i|$ and there exists $\theta_i \in \operatorname{Irr}(S_i) - \{1_{S_i}\}$ such that $p \nmid \theta_i(1)$, by [6, Corollary 12.2]. Set $\theta = \theta_1 \times \cdots \times \theta_t$ and let $\chi \in \operatorname{Irr}(G|\theta)$. Then, $\theta \in \operatorname{Irr}(N)$, $\ker \theta = \{1\}$ and $p \nmid \theta(1)$. Thus, $|N|_p \mid \theta^c(1)$, hence $|N|_p \mid \chi^c(1)$. So, $|N|_p \leq p$. Consequently, t = 1 and N is a non-abelian simple group.

Proposition 7. Let $N \le Z(G)$ and G/N be a non-abelian simple group. If p divides |N| and |G/N|, then there exists $\chi \in Irr(G)$ such that $\chi^{c}(1)_{p} \ge p^{2}$.

Proof. Since $N \le Z(G)$, N is abelian. Hence, N has a maximal normal subgroup M such that |N/M| = p. However, $M \le N \le Z(G)$. Thus, $M \le G$ and $N/M \le Z(G/M)$. If we can show that there exists $\chi \in Irr(G/M)$ such that $\chi^c(1)_p \ge p^2$, then Lemma 4 completes the proof. So, without loss of generality, assume that |N| = p. Then, $G' \cap N = \{1\}$ or N, where G' denotes the derived

subgroup of *G*. Since *G*/*N* is a non-abelian simple group, *G*'*N* = *G*. Thus, either *G*' × *N* = *G* and *G*' \cong *G*/*N* or *N* \leq *G*' = *G*. In the former case, there exists $\theta \in \text{Irr}(G') - \{1_{G'}\}$ such that $p \nmid \theta(1)$, by [6, Corollary 12.2]. Set $\chi = \theta \times \varphi$, for some $\varphi \in \text{Irr}(N) - \{1_N\}$. Then, $\chi \in \text{Irr}(G)$, $p \nmid \chi(1)$ and ker $\chi = \{1\}$. Thus, $|G|_p$ divides $\chi^c(1)_p$. Hence, $\chi^c(1)_p \geq p^2$, as desired. In the latter case, *G* is a quasi-simple group with *Z*(*G*) = *N*. Consequently, |N| divides |M(G/N)|, the order of the Schur multiplier of *G*/*N*. Therefore, $p \mid |M(G/N)|$. It follows from Lemma 5 (i) that $|G/N|_p \geq p^2$. Since *G*/*N* is a non-abelian simple group, there exists $\psi \in \text{Irr}(G/N)$ such that $p \nmid \psi(1)$ and ker $\psi = \{1\}$, by [6, Corollary 12.2]. So, $|G/N|_p$ divides $\psi^c(1)$. Consequently, $\psi^c(1)_p \geq p^2$. Hence, the proposition follows because Codeg(*G*/*N*) \subseteq Codeg(*G*).

Proof of Theorem 1. Let G be a minimal counterexample. Then, since the hypothesis is inherited by quotients and normal subgroups and $\ell_p(G/O_{p'}(G)) = \ell_p(G) = \ell_p(O^{p'}(G))$, we can assume that $O_{n'}(G) = \{1\}$ and $O^{p'}(G) = G$. Thus, every minimal normal subgroup M of G is a pgroup and $\ell_p(G/M) \leq e$. Suppose that M and W are two distinct minimal normal subgroups of G. Then, since $M \cap W = \{1\}, \ell_p(G/W) \leq e$ and $\ell_p(G/M) \leq e, \ell_p(G) = \ell_p(G/(M \cap W)) \leq e$ $\max\{\ell_p(G/M), \ell_p(G/W)\} \le e, \text{ by } [5, \text{ VI. 6.4}].$ This is a contradiction. Now let M be the unique minimal normal subgroup of *G*. Let $l = \ell_p(G/M)$ and define a normal series $\{1\} = P_0(G/M) \leq 1$ $M_0(G/M) \leq P_1(G/M) \leq M_1(G/M) \leq \cdots \leq P_l(G/M) \leq M_l(G/M) = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G/M \text{ of } G/M \text{ such that } \frac{M_l(G/M)}{P_l(G/M)} = G$ $\begin{array}{l} M_{0}(G/M) \leq n_{1}(G/M) \leq m_{1}(G/M) \leq \cdots \leq n_{i}(G/M) \leq m_{i}(G/M) \leq m_{i}(G/M) \leq m_{i}(G/M) \leq m_{i}(G/M) \leq m_{i}(G/M) \\ O_{p'}\left(\frac{G/M}{P_{i}(G/M)}\right) \text{ and } \frac{P_{i}(G/M)}{M_{i-1}(G/M)} = O_{p}\left(\frac{G/M}{M_{i-1}(G/M)}\right). \text{ Set } P_{i}/M = P_{i}(G/M) \text{ and } M_{i}/M = M_{i}(G/M). \text{ We claim that } O_{p'}(G/M) \neq \{1\}. \text{ If not, } M_{0} = P_{0}. \text{ Thus, } P_{1} = O_{p}(G) \text{ and } \{1\} \leq P_{1} \leq M_{1} \leq \cdots \leq P_{l} \leq M_{l} = G \\ \text{ is a normal series of } G \text{ such that } \frac{M_{i}}{P_{i}} = O_{p'}\left(\frac{G}{P_{i}}\right) \text{ and } \frac{P_{i}}{M_{i-1}} = O_{p}\left(\frac{G}{M_{i-1}}\right), \text{ for every } 1 \leq i \leq l. \text{ Therefore, } \\ \ell_{p}(G) = l = \ell_{p}(G/M) \leq e. \text{ This is a contradiction. Thus, } O_{p'}(G/M) \neq \{1\}. \text{ Set } N/M = O_{p'}(G/M). \text{ By } \end{array}$ Schur–Zassenhaus theorem, N has a p-complement L. Then, $G = NN_G(L) = MN_G(L)$. Since M is abelian, $M \cap N_G(L) \trianglelefteq G$. However, M is a minimal normal subgroup of G and $O_{p'}(G) = \{1\}$. Thus, we can check that $M \cap N_G(L) = \{1\}$. So, every $\lambda \in Irr(M)$ extends to $I_G(\lambda)$, by [6, Exercise 6.18]. Let $1_M = \lambda_1, \dots, \lambda_t$ be the representatives of the action of G on Irr(M). If O_i is the Gorbit of λ_i , then $1 + \sum_{i=2}^t |O_i| \lambda_i (1)^2 = \sum_{\lambda \in Irr(M)} \lambda(1)^2 = |M| \equiv_p 0$. Hence, there exists i > 1 such that $p \nmid |O_i| = [G : I_G(\lambda_i)]$. So, $I_G(\lambda_i)$ contains a Sylow *p*-subgroup *P* of *G*. Since λ_i extends to $I_G(\lambda_i)$, there exists $\hat{\lambda}_i \in \operatorname{Irr}(I_G(\lambda_i))$ such that $\hat{\lambda}_{iM} = \lambda_i$. Set $\chi = \hat{\lambda}_i^G$. By Clifford theory (see [6, Theorem 6.4]), $\chi \in Irr(G)$ and $\chi(1) = [G : I_G(\lambda_i)]$. Also, ker $\chi \cap M$ is a normal subgroup of G and M is a minimal normal subgroup of G. Thus, either ker $\chi \cap M = M$ or ker $\chi \cap M = \{1\}$. In the former case, $M \leq \ker \chi$, so χ_M is trivial and $\lambda_i = \lambda_1$, which is a contradiction. Therefore, $\ker \chi \cap M = \{1\}$. Consequently, ker $\chi = \{1\}$, because *M* is the unique minimal normal subgroup of *G*. Hence, $\chi^{c}(1) = |I_{G}(\lambda_{i})|$, which is divisible by |P|. So, $|G|_{p} \leq p^{e}$. Therefore, $\ell_{p}(G) \leq e$, which is a contradiction. Now, the proof is complete.

Note that in some parts of the proof of Theorem 1, we follow the ideas in the proof of [4, Theorem 2.3].

Proof of Theorem 2. First, let *G* be a non-*p*-solvable group of the minimal order such that $|G|_p \ge p^2$. Since the hypothesis is inherited by quotients and normal subgroups, we may assume that $O_{p'}(G) = \{1\}$ and $O^{p'}(G) = G$. We continue the proof in the following cases:

Case a. Assume that $O_p(G) \neq \{1\}$. Let $N \leq O_p(G)$ be a minimal normal subgroup of G. Then, |N| = p, by Proposition 6 (ii). However, G/N is not p-solvable and $Codeg(G/N) \subseteq Codeg(G)$. So, $|G/N|_p = p$, by minimality of G. Hence, $|G|_p = p^2$. Since |N| = p and $G/C_G(N)$ is isomorphic to a subgroup of Aut(N), we have $O^{p'}(G) \leq C_G(N)$. However, $O^{p'}(G) = G$. So, $C_G(N) = G$. Consequently, $N \leq Z(G)$. Set $\overline{G} = G/N$ and let $M/N = \overline{M}$ be a minimal normal subgroup of \overline{G} . If $\overline{M} \leq O_{p'}(\overline{G})$, then |N| and |M/N| are co-prime. By Schur–Zassenhaus theorem, M has a p-complement H. Since $N \leq Z(G)$, $M = H \times N$. Thus, $\overline{M} = HN/N \cong H/(H \cap N) = H = O_{p'}(M) \leq O_{p'}(G) = \{1\}$, which is a contradiction. Now let $O_{p'}(\overline{G}) = \{1\}$. Then, since \overline{G} is not p-solvable and $|\overline{G}|_p = p$, we get that \overline{M}

is the unique minimal normal subgroup of \overline{G} and $|\overline{M}|_p = p$. So, \overline{M} is a non-abelian simple group. By Proposition 7, there exists $\theta \in \operatorname{Irr}(M)$ such that $\theta^c(1)_p \ge p^2$. Therefore, $\chi^c(1)_p \ge p^2$, for every $\chi \in \operatorname{Irr}(G|\theta)$. This is a contradiction.

Case b. Let $O_p(G) = \{1\}$. Since $O_{p'}(G) = \{1\}$, every minimal normal subgroup of *G* is a non-abelian simple group of order divisible by *p*, by Proposition 6(ii). If *G* has two distinct minimal normal subgroups M_1 and M_2 , then $p \mid |M_1|, |M_2|$. However, $|G|_p = p^2$ and $O^{p'}(G) = G$. Thus, $G = M_1 \times M_2$. So, there exists $\theta = \theta_1 \times \theta_2 \in \operatorname{Irr}(M_1) \times \operatorname{Irr}(M_2) = \operatorname{Irr}(G)$ such that $p \nmid \theta(1)$ and ker $\theta = \{1\}$. Therefore, $p^2 = |G|_p \mid \theta^c(1)$, which is a contradiction. Next let *G* have the unique minimal normal subgroup, say *M*. Then, $C_G(M) = \{1\}$. Consequently, $G \leq \operatorname{Aut}(M)$. By Proposition 6(ii), $|M|_p = p$. Thus, $p \mid |G/M|$, hence $p \mid |\operatorname{Out}(M)|$. Lemma 5(ii) shows that $|M|_p \geq p^2$. This is a contradiction.

So,
$$|G|_p = p$$
, as desired.

Remark 8. If $\chi^c(1)_p \le p$, for every irreducible character χ of *G*, then by Theorems 1 and 2, either $|G|_p = p$ or *G* is a *p*-solvable group of *p*-length one.

Proof of Corollary 3. If *G* is non-*p*-solvable, then $|G|_p = p$, by Theorem 2. Thus, the corollary follows. Now, let *G* be *p*-solvable. By Theorem 1, *G* has *p*-length one. Let $L = O_{p'}(G)$ and $K/L = O_p(G/L)$. Then, K/L is isomorphic to a Sylow *p*-subgroup of *G*. By Lemma 4, Codeg $(K/L) = \{1, p\}$. Thus, [3, Lemma 2.4] forces K/L to be elementary abelian, as desired.

Example 9. Assume that $G = L_1 \times \cdots \times L_t$, where L_1, \ldots, L_t are Symmetric groups of degrees 3. Let $\chi \in Irr(G) - \{1_G\}$. Then, there exist $\theta_1 \in Irr(L_1), \ldots, \theta_t \in Irr(L_t)$ such that $\chi = \theta_1 \times \cdots \times \theta_t$. Set $\Omega_1 = \{1 \le i \le t : \theta_i(1) = 2\}$ and $\Omega_2 = \{1 \le i \le t : i \notin \Omega_1\}$. Let $\chi_1 = \prod_{i \in \Omega_1} \theta_i$ and $\chi_2 = \prod_{i \in \Omega_2} \theta_i$. If $\chi = \chi_1$, then $\chi(1) = |G|_2$. Hence, $\chi^c(1)_2 = 1$. Otherwise, fix $H = \prod_{i \in \Omega_2} L_i$. Then, H/H' is an elementary abelian 2-group of order $|H|_2$ and $\chi_2 \in Irr(H/H')$. Therefore, $|\ker \chi_2|_2 = |H|_2/2$, by [3, Lemma 2.4]. Since, $\chi = \chi_1 \times \chi_2$, $(\prod_{i \in \Omega_1} 1_{L_i}) \times \ker \chi_2 \le \ker \chi$. Thus, $2^{|\Omega_2|-1} \le |\ker \chi|$. Also, $\chi(1) = 2^{|\Omega_1|}$. Therefore, $\chi^c(1)_2 \le 2$. This example shows that in Corollary 3, $|G/O_p(G)|_p$ is not necessarily bounded.

Example 10. Let *K* be an elementary abelian 3-group of order 3^n . Then, the cyclic group $P = \langle z \rangle$ of order 2 acts on *K* by $x^z = x^2$, for every $x \in K$. Let *G* be a semi-direct product $K \rtimes P$ and let $\chi \in Irr(G) - \{1_G\}$. If $K \leq \ker \chi$, then $\chi^c(1) = 2$. Otherwise, there exists $\theta \in Irr(K) - \{1_K\}$ such that $\langle \chi_K, \theta \rangle \neq 0$. By [3, Lemma 2.4], $|\ker \theta| = 3^{n-1}$. It is easy to check that $\ker \theta \leq G$. Therefore, $\ker \theta \leq \ker \chi$. Thus, $\chi^c(1)_3 | |G/\ker \theta|_3 = 3$. Consequently, $\chi^c(1)_3 \leq 3$. This example shows that in Corollary 3, $|O_p(G)|$ and $|G/Z(G)|_p$ are not necessarily bounded.

Example 11. Let $p \neq 2$ and *S* be a non-abelian simple group such that $p \nmid |S|$. Suppose that *P* is an elementary abelian *p*-group of order p^n and $G = P \times S$. For every $\chi \in Irr(G)$, we can see that $p^{n-1} \mid |\ker \chi|$, so $\chi^c(1)_p \mid p^n/p^{n-1} = p$. This example shows that in Theorem 2, "non-*p*-solvability" cannot be substituted with "non-solvability".

Acknowledgments

The authors would like to thank the referees for careful reading and many constructive comments, which substantially helped to improve the quality of the paper.

References

- [1] N. Ahanjideh, "The Fitting subgroup, *p*-length, derived length and character table", to appear in *Math. Nachr.*, https://www.doi.org/10.1002/mana.202000057, 2020.
- [2] R. Bahramian, N. Ahanjideh, "p-divisibility of co-degrees of irreducible characters", to appear in Bull. Aust. Math. Soc., https://www.doi.org/10.1017/S0004972720000295, 2020.

- [3] N. Du, M. L. Lewis, "Codegrees and nilpotence class of p-groups", J. Group Theory 19 (2016), no. 4, p. 561-568.
- [4] E. Giannelli, N. Rizo, A. A. Schaeffer Fry, "Groups with few p'-character degrees", J. Pure Appl. Algebra 224 (2020), no. 8, article no. 106338 (15 pages).
- [5] B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, 1967.
- [6] I. M. Isaacs, Character theory of finite groups, Dover Publications, 1994.
- [7] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, London Mathematical Society, 1990.
- [8] M. L. Lewis, G. Navarro, P. H. Tiep, H. P. Tong-Viet, "p-parts of character degrees", J. Lond. Math. Soc. 92 (2015), no. 2, p. 483-497.
- [9] M. L. Lewis, G. Navarro, T. R. Wolf, "*p*-parts of character degrees and the index of the Fitting subgroup", *J. Algebra* 411 (2014), p. 182-190.
- [10] G. Qian, "A note on *p*-parts of character degrees", Bull. Lond. Math. Soc. 50 (2018), no. 4, p. 663-666.
- [11] G. Qian, Y. Wang, H. Wei, "Co-degrees of irreducible characters in finite groups", J. Algebra 312 (2007), no. 2, p. 946-955.