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Abstract. For a character y of a finite group G, the co-degree of y is y°(1) = % Let p be a prime and

let e be a positive integer. In this paper, we first show that if G is a p-solvable group such that p€*! tx€Q),
for every irreducible character y of G, then the p-length of G is not greater than e. Next, we study the finite
groups satisfying the condition that p? does not divide the co-degrees of their irreducible characters.
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1. Introduction and preliminaries

In this paper, G is a finite group, p is a prime number and e is a positive integer. Let Z(G) be the
center of G and let O,(G) and O, (G) be the largest normal p-subgroup and the largest normal
p’-subgroup of G, respectively. Also, O (G) is the largest normal subgroup of G whose indexin G
is co-prime to p. For a p-solvable group G, the p-length of G, denoted by ¢, (G), is the minimum
possible number of factors that are p-groups in any normal series of G which every factor is either
a p-group or a p’-group. Let Irr(G) denote the set of (complex) irreducible characters of G. For a
normal subgroup N of G and a character 8 of N, let I5(0) denote the inertia group of 6 in G and
let Irr(G|6) be the set of the irreducible constituents of the induced character 8€. Also, we use ep
to show the p-part of e. For a character y of G, the number y°(1) = [ka(_%x] is called the co-degree
of y (see [11]). Set Codeg(G) = {x°(1) : y € Irr(G)}. In [1-3, 11], some properties of the co-degrees
of irreducible characters of finite groups have been studied.

In [1], it has been proved that the p-length of a finite p-solvable group is not greater than the
number of the distinct co-degrees of its irreducible characters which are divisible by p. In this
paper, we prove that:

Theorem 1. IfG is a p-solvable group and p®*' { x°(1), for every y € Irt(G), then € ,(G) < e.

In [8-10], it has been shown that if p? { (1), for every y € Irr(G), then [G : Op(G)lp = p°. In this
paper, we also prove that:
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Theorem 2. Let G be a non-p-solvable group. If x*(1), < p, for every x € Irr(G), then |G|, = p.

Corollary 3. Ifx°(1), < p, for every x € Irt(G), then the Sylow p-subgroups of G are elementary
abelian p-groups.

In Examples 9, 10 and 11, we show that in Theorem 2, “non- p-solvability” cannot be substi-
tuted with “non-solvability” and in Corollary 3, there is not necessarily an upper bound for |G|,
or |G/ 0p(G)p.

2. Proofs of the main results

We first state a lemma that will be used frequently in this paper without explicit reference.

Lemma 4 (cf. [11, Lemma 2.1]). Let N be a normal subgroup of G. Then, Codeg(G/N) <
Codeg(G). Also, ifw e Irr(N), thenw®(1) | x°(1), for every x € Irr(Gly).

Lemma5. LetS be a non-abelian simple group.

(i) Ifp is a prime divisor of the order of the Schur multiplier of S, then |S|, = p2.
(i) If p is a prime divisor of |Out(S)| such that p divides|S|, then |S|, = p.

Proof. Since S is a non-abelian simple group, |S|; = 4. So, the lemma follows when p = 2. Next,
assume that p = 3. If p is a prime divisor of the order of the Schur multiplier of S, then since
p =3, [7, Section 5.1] shows that S= PSL,(q), plg—1land p|n, SEPSU,(q),plqg+1land p|n,

S€{PSL,(9), Alt7, PSU4(3), G2(3), J3, Maz, Fizp, Mcl, Suz, B3(3),” Eg(4), Fij,, O' N}

(under isomorphism) and p =3, SE Es(gq) and p=3|g—1or S= 2EG(q) and p =3 g+ 1. Thus,
we can check at once that |S], = pz, as desired in (i). Next, let p be a prime divisor of |Out(S)| and
|SI. Then, [8, Lemma 3.1] shows that |S], > |Out(S)|, = p. Thus, |S], = pz, as wanted. O

In order to prove the main results, we need to prove the following propositions:

Proposition 6. Let N be a minimal normal subgroup of G.
(i) IfN is abelian and y € Irr(G) such that N £ ker y, then |N| divides y°(1).
(i) Ifp!|IN|andx‘(1)p < p, for every x € Irx(G), then |N|, = p and N is a simple group.

Proof. (i). Since N is a minimal normal subgroup of G and N # Nnkery <G, Nnkery =
{1}. So, N = Nkery/kery is an abelian normal subgroup of G/kery. By Ito’s theorem (see [6,

Theorem 6.15]), x(1) | [keGrX : ]\]’(l;f?] =[G: Nkery]. Thus, [N|| y°(1), as desired in (i).

(ii). First suppose that N < O,(G), 8 € Irr(N) — {In} and x € Irr(Gl6). Then, N £ kery. So,
IN|1x(), by (). Thus, [N], < x°(1), < p. However, N is a p-group. Hence, |N| = p, as desired.
Now, let N be non-abelian. Then, N = S; x --- x S¢, where Sj,...,S; are isomorphic non-abelian
simple groups. For every i € {1,...,t}, p | |S;| and there exists 6; € Irr(S;) — {1s,} such that p{0;(1),
by [6, Corollary 12.2]. Set 6 = 61 x --- x ; and let y € Irr(G|0). Then, 0 € Irr(NN), ker0 = {1} and
p16(1). Thus, INlp 1 0¢(1), hence |N|, | x°(1). So, IN|, < p. Consequently, £ =1 and N is a non-
abelian simple group. U

Proposition7. Let N < Z(G) and G/ N be a non-abelian simple group. If p divides |N| and |G/ N|,
then there exists y € Irr(G) such thatxc(l)p > pz.

Proof. Since N < Z(G), N is abelian. Hence, N has a maximal normal subgroup M such that
IN/M| = p. However, M < N < Z(G). Thus, M <G and N/M < Z(G/M). If we can show that
there exists y € Irr(G/M) such that y°(1), = p?, then Lemma 4 completes the proof. So, without
loss of generality, assume that |[N| = p. Then, G'n N = {1} or N, where G’ denotes the derived
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subgroup of G. Since G/ N is a non-abelian simple group, G'N = G. Thus, either G’ x N = G and
G'=ZG/Nor N =G = G. In the former case, there exists 0 € Irr(G') — {15} such that p{6(1), by [6,
Corollary 12.2]. Set y = 6 x ¢, for some ¢ € Irr(N) — {15}. Then, y € Irr(G), p1 x(1) and ker y = {1}.
Thus, |Gl divides x°(1),. Hence, x°(1), = p?, as desired. In the latter case, G is a quasi-simple
group with Z(G) = N. Consequently, |N| divides |M(G/N)|, the order of the Schur multiplier
of G/N. Therefore, p | IM(G/N)|. It follows from Lemma 5 (i) that |G/N|, = pz. Since G/N is a
non-abelian simple group, there exists ¥ € Irr(G/N) such that p t ¥ (1) and kerw = {1}, by [6,
Corollary 12.2]. So, |G/N|, divides w°(1). Consequently, 1//”(1),, > pz. Hence, the proposition
follows because Codeg(G/N) < Codeg(G). g

Proof of Theorem 1. Let G be a minimal counterexample. Then, since the hypothesis is inher-
ited by quotients and normal subgroups and Zp(G/Op/(G)) ={p(G) = ZP(O”’(G)), we can as-
sume that O, (G) = {1} and O”'(G) = G. Thus, every minimal normal subgroup M of G is a p-
group and £,(G/M) < e. Suppose that M and W are two distinct minimal normal subgroups
of G. Then, since MNW = {1}, £,(G/W) < e and £,(G/M) < e, £p(G) = £,(GI(MNW)) <
max{¢,(G/M),¢,(G/W)} < e, by [5, VI. 6.4]. This is a contradiction. Now let M be the unique
minimal normal subgroup of G. Let [ = £,(G/M) and define a normal series {1} = Po(G/M) <

Mo(G/M) < Py(G/ M) <A My (GI M) <-+- I P (GIM) I M (G/M) = G/ M of G/ M such that Fxgras =

Op(545) and 7S = 0, (5754 55)- Set Pi/M = Pi(GIM) and M;/M = M;(G/M). We
claim that O,/ (G/M) # {1}. If not, MO = Py. Thus, P1 = 0,(G) and 11<4AP<AM; <--- <P <AM; =G
is a normal series of G such that % = O,y (& ) and 3 T = 0p (32 -), for every 1 < i < 1. Therefore,
0p(G)=1=¢y(G/M) <e.Thisis acontradlctlon Thus Op (G/M) #{1}. Set N/M = O (G/M). By
Schur Zassenhaus theorem, N has a p-complement L. Then, G=NNg(L) = MNG(L) Since M
is abelian, M N Ng(L) < G. However, M is a minimal normal subgroup of G and O, (G) = {1}.
Thus, we can check that M n Ng(L) = {1}. So, every A € Irr(M) extends to Ig(A), by [6, Exer-
cise 6.18]. Let 1)y = A4,..., A be the representatives of the action of G on Irr(M). If O; is the G-
orbit of A;, then 1 +Zt_2|O A;(1)2 = Z;Lehr(M)/l(l)z IM| =, 0. Hence, there exists i > 1 such
that p110;| = [G: IG(/I )1. So, Ig(A;) contalns a Sylow p- subgroup P of G. Since A; extends to
I (A;), there exists )L, € Irr(Ig(A;)) such that JLIM Ai.Sety = AG By Clifford theory (see [6, The-
orem 6.4]), y € Irr(G) and x(1) = [G : Ig(A;)]. Also, ker y n M is a normal subgroup of G and M
is a minimal normal subgroup of G. Thus, either ker y n M = M or ker y n M = {1}. In the former
case, M < kery, so x is trivial and A; = A1, which is a contradiction. Therefore, ker y n M = {1}.
Consequently, kery = {1}, because M is the unique minimal normal subgroup of G. Hence,
x¢(1) = |Ig(A;)], which is divisible by |P|. So, IGlp < p¢. Therefore, lp(G) < e, which is a con-
tradiction. Now, the proof is complete. O

Note that in some parts of the proof of Theorem 1, we follow the ideas in the proof of [4,
Theorem 2.3].

Proof of Theorem 2. First, let G be a non-p-solvable group of the minimal order such that
IGlp = p?. Since the hypothesis is inherited by quotients and normal subgroups, we may assume
that Oy (G) = {1} and O”' (G) = G. We continue the proof in the following cases:

Case a. Assume that O, (G) # {1}. Let N < O,(G) be a minimal normal subgroup of G. Then,
IN| = p, by Proposition 6 (ii). However, G/ N is not p-solvable and Codeg(G/N) < Codeg(G). So,
|G/ N|p = p, by minimality of G. Hence, |G|, = pz. Since |N| = p and G/Cg(N) is isomorphic to a
subgroup of Aut(N), we have o' (G) < Cg(N). However, 0" (G) =G.So, Cc(N) = G. Consequently,
N = Z(G).Set G = G/ N and let M/ N = M be a minimal normal subgroup of G. If M < 0, (G), then
IN| and [M/N]| are co-prime. By Schur-Zassenhaus theorem, M has a p-complement H. Since
N<Z(G,M=HxN.Thus, M=HN/N=H/(HNN)=H = Opf(M) < Opr(G) = {1}, which is a
contradiction. Now let 0, (G) ={1}. Then, since G is not p-solvable and |G|, = p, we get that M
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is the unique minimal normal subgroup of G and | M| p =p.So, M is a non-abelian simple group.
By Proposition 7, there exists 6 € Irr(M) such that (1), = p?. Therefore, y¢(1) p = p?, for every
x € Irr(Gl0). This is a contradiction.

Caseb. Let O,(G) = {1}. Since O, (G) = {1}, every minimal normal subgroup of G is a non-abelian
simple group of order divisible by p, by Proposition 6 (ii). If G has two distinct minimal normal
subgroups M and M, then p | |M;],|M:|. However, |G|, = p2 and Op’(G) = G.Thus, G = M; x M>.
So, there exists 0 = 01 x 0, € Irr(M;) x Irr(Ma) = Irr(G) such that p16(1) and ker6 = {1}. Therefore,
;/J2 =|Glp | 6°(1), which is a contradiction. Next let G have the unique minimal normal subgroup,
say M. Then, Cg(M) = {1}. Consequently, G < Aut(M). By Proposition 6 (ii), M|, = p. Thus,
p | 1G/ M|, hence p | |Out(M)|. Lemma 5 (ii) shows that IMlp = pz. This is a contradiction.

So, |Glp = p, as desired. O

Remark 8. If y¢(1) p < p, for every irreducible character y of G, then by Theorems 1 and 2, either
|Glp = p or Gis a p-solvable group of p-length one.

Proof of Corollary 3. If G is non-p-solvable, then |G|, = p, by Theorem 2. Thus, the corollary
follows. Now, let G be p-solvable. By Theorem 1, G has p-length one. Let L = O,(G) and K/L =
O, (G/L). Then, K/Lis isomorphic to a Sylow p-subgroup of G. By Lemma 4, Codeg(K/L) = {1, p}.
Thus, [3, Lemma 2.4] forces K/L to be elementary abelian, as desired. O

Example 9. Assume that G = Ly x --- x L;, where Ly,...,L; are Symmetric groups of degrees 3.
Let y € Irr(G) — {1g}. Then, there exist 0, € Irr(L,),...,0; € Irr(L;) such that y =0, x--- x 6;. Set
U ={1=si=<r:0;(1)=2tand Dy ={1=<i=<t:i¢Q}. Let y1 =I1;eq,0; and y» =I1;cq,0;. If y = x1,
then y(1) = |Gl,. Hence, x°(1); = 1. Otherwise, fix H = Il;eq,L;. Then, H/H' is an elementary
abelian 2-group of order |H|, and y» € Irr(H/ H'). Therefore, |ker y2|» = |H|2/2, by [3, Lemma 2.4].
Since, y = x1 % x2, (Mjeq, 11,) x ker y2 < ker y. Thus, 212171 < [ker y|. Also, y(1) = 2/41l. Therefore,
x1(1)2 < 2. This example shows that in Corollary 3, |G/ O, (G)p is not necessarily bounded.

Example 10. Let K be an elementary abelian 3-group of order 3”. Then, the cyclic group P = (z)
of order 2 acts on K by x? = x?, for every x € K. Let G be a semi-direct product K x P and
let y € Irr(G) — {1g}. If K < kery, then (1) = 2. Otherwise, there exists 8 € Irr(K) — {1g} such
that (yx,0) # 0. By [3, Lemma 2.4], |kerf| = 3771 1t is easy to check that ker@ < G. Therefore,
ker6 < ker y. Thus, y°(1)3 | |G/ kerf|3 = 3. Consequently, y°(1)3 < 3. This example shows that in
Corollary 3, |0,(G)| and |G/ Z(G)|, are not necessarily bounded.

Example 11. Let p # 2 and S be a non-abelian simple group such that p { |S|. Suppose that P is
an elementary abelian p-group of order p” and G = P x S. For every y € Irr(G), we can see that
p" !l lkerxl,so x(1), | p"/p™! = p. This example shows that in Theorem 2, “non- p-solvability”
cannot be substituted with “non-solvability”.
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