We provide a non-recursive, combinatorial classification of multiplicity-free skew Schur polynomials. These polynomials are , and , characters of the skew Schur modules. Our result extends work of H. Thomas–A. Yong, and C. Gutschwager, in which they classify the multiplicity-free skew Schur functions.
Revised:
Accepted:
Published online:
Keywords: Skew–Schur polynomial, Littlewood–Richardson tableaux, multiplicity-free.
@article{ALCO_2021__4_6_1073_0, author = {Gao, Shiliang and Hodges, Reuven and Orelowitz, Gidon}, title = {Multiplicity-free skew {Schur} polynomials}, journal = {Algebraic Combinatorics}, pages = {1073--1117}, publisher = {MathOA foundation}, volume = {4}, number = {6}, year = {2021}, doi = {10.5802/alco.192}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.192/} }
TY - JOUR AU - Gao, Shiliang AU - Hodges, Reuven AU - Orelowitz, Gidon TI - Multiplicity-free skew Schur polynomials JO - Algebraic Combinatorics PY - 2021 SP - 1073 EP - 1117 VL - 4 IS - 6 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.192/ DO - 10.5802/alco.192 LA - en ID - ALCO_2021__4_6_1073_0 ER -
Gao, Shiliang; Hodges, Reuven; Orelowitz, Gidon. Multiplicity-free skew Schur polynomials. Algebraic Combinatorics, Volume 4 (2021) no. 6, pp. 1073-1117. doi : 10.5802/alco.192. http://www.numdam.org/articles/10.5802/alco.192/
[1] Spherical actions on flag varieties, Mat. Sb., Volume 205 (2014) no. 9, pp. 3-48 | DOI | MR | Zbl
[2] Multiplicity-free skew Schur functions with full interval support, Sém. Lothar. Combin., Volume 75 ([2015-2019]), Art. B75j, 35 pages | MR | Zbl
[3] Zero-one Schubert polynomials, Math. Z., Volume 297 (2021) no. 3-4, pp. 1023-1042 | DOI | MR | Zbl
[4] A Littlewood–Richardson miscellany, European J. Combin., Volume 14 (1993) no. 3, pp. 191-212 | DOI | MR | Zbl
[5] Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl
[6] On multiplicity-free skew characters and the Schubert calculus, Ann. Comb., Volume 14 (2010) no. 3, pp. 339-353 | DOI | MR | Zbl
[7] A classification of spherical Schubert varieties in the Grassmannian (2018) (preprint https://arxiv.org/abs/1809.08003)
[8] Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv) (Israel Math. Conf. Proc.), Volume 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1-182 | MR | Zbl
[9] Group characters and algebra, Philos. Trans. R. Soc. Lond., Ser. A, Contain. Pap. Math. Phys. Character, Volume 233 (1934), pp. 99-141 | DOI | Zbl
[10] Multiple flag varieties of finite type, Adv. Math., Volume 141 (1999) no. 1, pp. 97-118 | DOI | MR | Zbl
[11] On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI | MR | Zbl
[12] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 2001, xii+581 pages | MR | Zbl
[13] Multiplicity-free products of Schur functions, Ann. Comb., Volume 5 (2001) no. 2, pp. 113-121 | DOI | MR | Zbl
[14] Multiplicity-free products and restrictions of Weyl characters, Represent. Theory, Volume 7 (2003), pp. 404-439 | DOI | MR | Zbl
[15] Multiplicity-free Schubert calculus, Canad. Math. Bull., Volume 53 (2010) no. 1, pp. 171-186 | DOI | MR | Zbl
Cited by Sources: