Howe dualities lead to diagrammatic categories which describe the representations of Lie-type objects as a monoidal category (that is, via generators and relations). Applying this philosophy to the type Q Howe duality of Cheng–Wang and Sergeev, we introduce diagrammatic web supercategories of type Q via generators and relations and show they describe the full subcategory of supermodules for the Lie superalgebra of type Q given by the tensor products of supersymmetric tensor powers of the natural supermodule.
Revised:
Accepted:
Published online:
Keywords: Monoidal supercategories, diagrammatic categories, web categories, Lie superalgebras.
@article{ALCO_2021__4_6_1027_0, author = {Brown, Gordon C. and Kujawa, Jonathan R.}, title = {Webs of type {Q}}, journal = {Algebraic Combinatorics}, pages = {1027--1072}, publisher = {MathOA foundation}, volume = {4}, number = {6}, year = {2021}, doi = {10.5802/alco.191}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.191/} }
Brown, Gordon C.; Kujawa, Jonathan R. Webs of type Q. Algebraic Combinatorics, Volume 4 (2021) no. 6, pp. 1027-1072. doi : 10.5802/alco.191. http://www.numdam.org/articles/10.5802/alco.191/
[1] Trace as an alternative decategorification functor, Acta Math. Vietnam., Volume 39 (2014) no. 4, pp. 425-480 | DOI | MR | Zbl
[2] Quantum walled Brauer-Clifford superalgebras, J. Algebra, Volume 454 (2016), pp. 433-474 | DOI | MR | Zbl
[3] Webs for permutation supermodules of type Q, Comm. Algebra, Volume 47 (2019) no. 11, pp. 4763-4790 | DOI | MR | Zbl
[4] Quantum Webs of Type Q (2020) (https://arxiv.org/abs/2001.00663)
[5] A basis theorem for the degenerate affine oriented Brauer–Clifford supercategory, Canad. J. Math., Volume 71 (2019) no. 5, pp. 1061-1101 | DOI | MR | Zbl
[6] A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., Volume 8 (2017) no. 1, pp. 75-112 | DOI | MR | Zbl
[7] Type A blocks of super category , J. Algebra, Volume 473 (2017), pp. 447-480 | DOI | MR | Zbl
[8] Type C blocks of super category , Math. Z., Volume 293 (2019) no. 3-4, pp. 867-901 | DOI | MR | Zbl
[9] Monoidal supercategories, Comm. Math. Phys., Volume 351 (2017) no. 3, pp. 1045-1089 | DOI | MR | Zbl
[10] Projective representations of symmetric groups via Sergeev duality, Math. Z., Volume 239 (2002) no. 1, pp. 27-68 | DOI | MR | Zbl
[11] Webs and quantum skew Howe duality, Math. Ann., Volume 360 (2014) no. 1-2, pp. 351-390 | DOI | MR | Zbl
[12] Howe duality for quantum queer superalgebras, J. Algebra, Volume 547 (2020), pp. 358-378 | DOI | MR | Zbl
[13] Reduction method for representations of queer Lie superalgebras, J. Math. Phys., Volume 57 (2016) no. 5, 051703, 12 pages | DOI | MR | Zbl
[14] Character formulae for queer Lie superalgebras and canonical bases of types , Comm. Math. Phys., Volume 352 (2017) no. 3, pp. 1091-1119 | DOI | MR | Zbl
[15] Remarks on the Schur–Howe–Sergeev duality, Lett. Math. Phys., Volume 52 (2000) no. 2, pp. 143-153 | DOI | MR | Zbl
[16] Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, 144, American Mathematical Society, Providence, RI, 2012, xviii+302 pages | DOI | MR | Zbl
[17] The quantized walled Brauer algebra and mixed tensor space, Algebr. Represent. Theory, Volume 17 (2014) no. 2, pp. 675-701 | DOI | MR | Zbl
[18] Presenting queer Schur superalgebras, Int. Math. Res. Not. IMRN (2015) no. 8, pp. 2210-2272 | DOI | MR | Zbl
[19] Light ladders and clasp conjectures (2015) (https://arxiv.org/abs/1510.06840)
[20] Braided tensor categories, Adv. Math., Volume 102 (1993) no. 1, pp. 20-78 | DOI | MR | Zbl
[21] Temperley-Lieb recoupling theory and invariants of -manifolds, Annals of Mathematics Studies, 134, Princeton University Press, Princeton, NJ, 1994, x+296 pages | DOI | MR | Zbl
[22] Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005) no. 10, p. vi+137 (Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]) | MR | Zbl
[23] Graphical calculus on representations of quantum Lie algebras, ProQuest LLC, Ann Arbor, MI, 2003, 55 pages Thesis (Ph.D.)–University of California, Davis | MR
[24] Spiders for rank Lie algebras, Comm. Math. Phys., Volume 180 (1996) no. 1, pp. 109-151 | DOI | MR | Zbl
[25] A diagrammatic category for the representation theory of , ProQuest LLC, Ann Arbor, MI, 2007, 89 pages Thesis (Ph.D.)–University of California, Berkeley | MR
[26] Characters of irreducible -modules and cohomology of for the Lie supergroup , J. Math. Sci. (New York), Volume 84 (1997) no. 5, pp. 1382-1412 (Algebraic geometry, 7) | DOI | MR | Zbl
[27] The foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, Adv. Math., Volume 302 (2016), pp. 1251-1339 | DOI | MR | Zbl
[28] Mixed quantum skew Howe duality and link invariants of type , J. Pure Appl. Algebra, Volume 223 (2019) no. 7, pp. 2733-2779 | DOI | MR | Zbl
[29] Symmetric webs, Jones-Wenzl recursions, and -Howe duality, Int. Math. Res. Not. IMRN (2016) no. 17, pp. 5249-5290 | DOI | MR | Zbl
[30] Deformations of colored link homologies via foams, Geom. Topol., Volume 20 (2016) no. 6, pp. 3431-3517 | DOI | MR | Zbl
[31] Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten, Nachrichten von der Ges. der Wiss. Zu Göttingen, Math.-Phys. Klasse (1932), pp. 498-504 | Zbl
[32] Webs and -Howe dualities in types BCD, Trans. Amer. Math. Soc., Volume 371 (2019) no. 10, pp. 7387-7431 | DOI | MR | Zbl
[33] Tensor algebra of the identity representation as a module over the Lie superalgebras and , Mat. Sb. (N.S.), Volume 123(165) (1984) no. 3, pp. 422-430 | MR
[34] The Howe duality and the projective representations of symmetric groups, Represent. Theory, Volume 3 (1999), pp. 416-434 | DOI | MR | Zbl
[35] An analog of the classical invariant theory for Lie superalgebras. I, II, Michigan Math. J., Volume 49 (2001) no. 1, p. 113-146, 147–168 | DOI | MR | Zbl
[36] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[37] Super -Howe duality and web categories, Algebr. Geom. Topol., Volume 17 (2017) no. 6, pp. 3703-3749 | DOI | MR | Zbl
[38] Operator invariants of tangles, and -matrices, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 5, p. 1073-1107, 1135 | DOI | MR | Zbl
[39] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, De Gruyter, Berlin, 2016, xii+596 pages | DOI | MR | Zbl
[40] On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada, Volume 9 (1987) no. 1, pp. 5-9 | MR | Zbl
Cited by Sources: