For every pair of distinct primes , , where we prove that is a CI-group with respect to binary relational structures.
Revised:
Accepted:
Published online:
Keywords: Cayley graphs, CI property.
@article{ALCO_2021__4_2_289_0, author = {Somlai, G\'abor and Muzychuk, Mikhail}, title = {The {Cayley} isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$}, journal = {Algebraic Combinatorics}, pages = {289--299}, publisher = {MathOA foundation}, volume = {4}, number = {2}, year = {2021}, doi = {10.5802/alco.154}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.154/} }
TY - JOUR AU - Somlai, Gábor AU - Muzychuk, Mikhail TI - The Cayley isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$ JO - Algebraic Combinatorics PY - 2021 SP - 289 EP - 299 VL - 4 IS - 2 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.154/ DO - 10.5802/alco.154 LA - en ID - ALCO_2021__4_2_289_0 ER -
%0 Journal Article %A Somlai, Gábor %A Muzychuk, Mikhail %T The Cayley isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$ %J Algebraic Combinatorics %D 2021 %P 289-299 %V 4 %N 2 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.154/ %R 10.5802/alco.154 %G en %F ALCO_2021__4_2_289_0
Somlai, Gábor; Muzychuk, Mikhail. The Cayley isomorphism property for $\protect \mathbb{Z}_{p}^{3} \times \protect \mathbb{Z}_{q}$. Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 289-299. doi : 10.5802/alco.154. http://www.numdam.org/articles/10.5802/alco.154/
[1] Research problem 2-10, Journal of Combinatorial Theory, Volume 2 (1967) no. 3, p. 393 | DOI
[2] Isomorphism of circulant graphs and digraphs, Discrete Math., Volume 25 (1979) no. 2, pp. 97-108 | DOI | MR | Zbl
[3] Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., Volume 29 (1977) no. 3-4, pp. 329-336 | DOI | MR
[4] Isomorphisms of Cayley graphs. I, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I (Colloq. Math. Soc. János Bolyai), Volume 18, North-Holland, Amsterdam-New York (1978), pp. 35-52 | MR | Zbl
[5] Isomorphism problem for a special class of graphs, Acta Math. Acad. Sci. Hungar., Volume 21 (1970) no. 3-4, pp. 267-270 | DOI | MR
[6] The isomorphism problem for Cayley ternary relational structures for some abelian groups of order , Discrete Math., Volume 310 (2010) no. 21, pp. 2895-2909 | DOI | MR | Zbl
[7] Some new groups which are not CI-groups with respect to graphs, Electron. J. Combin., Volume 25 (2018) no. 1, 1.12, 7 pages | MR | Zbl
[8] Graphs with circulant adjacency matrices, J. Combinatorial Theory, Volume 9 (1970), pp. 297-307 | DOI | MR | Zbl
[9] Schurity of S-rings over a cyclic group and generalized wreath product of permutation groups, St. Petersbg. Math. J., Volume 24 (2013) no. 3, pp. 431-460 | DOI | MR | Zbl
[10] Elementary abelian groups of rank 5 are DCI-groups, J. Combin. Theory Ser. A, Volume 157 (2018), pp. 162-204 | DOI | MR | Zbl
[11] On Cayley graph isomorphisms, Ars Comb., Volume 15 (1983), pp. 231-246
[12] An elementary abelian group of rank 4 is a CI-group, J. Combin. Theory Ser. A, Volume 94 (2001) no. 2, pp. 339-362 | DOI | MR | Zbl
[13] The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) (Colloq. Math. Soc. János Bolyai), Volume 25, North-Holland, Amsterdam-New York, 1981, pp. 405-434 | MR
[14] The group is a CI-group, Comm. Algebra, Volume 37 (2009) no. 10, pp. 3500-3515 | DOI | MR
[15] -property for decomposable Schur rings over an abelian group, Algebra Colloq., Volume 26 (2019) no. 1, pp. 147-160 | DOI | MR | Zbl
[16] Further restrictions on the structure of finite CI-groups, J. Algebraic Combin., Volume 26 (2007) no. 2, pp. 161-181 | DOI | MR | Zbl
[17] Elementary proof that is a DCI-group, Discrete Math., Volume 338 (2015) no. 8, pp. 1385-1393 | DOI | MR | Zbl
[18] Ádám’s conjecture is true in the square-free case, J. Combin. Theory Ser. A, Volume 72 (1995) no. 1, pp. 118-134 | DOI | MR | Zbl
[19] On Ádám’s conjecture for circulant graphs, Discrete Math., Volume 167/168 (1997), pp. 497-510 | DOI | MR | Zbl
[20] Untersuchungen von -Ringen, insbesondere im Gruppenring von -Gruppen, Math. Nachr., Volume 60 (1974), pp. 1-27 | DOI | MR | Zbl
[21] Zur Theorie der einfach transitiven Permutationsgruppen, 1933, Preußische Akademie der Wissenschaften, Berlin, 1933, pp. 598-623 | Zbl
[22] Elementary abelian -groups of rank are not CI-groups, J. Algebraic Combin., Volume 34 (2011) no. 3, pp. 323-335 | DOI | MR | Zbl
[23] Finite permutation groups, Academic Press, 1964, x+114 pages (reprinted 2014) | MR | Zbl
Cited by Sources: