There is a remarkable formula for the principal specialization of a type A Schubert polynomial as a weighted sum over reduced words. Taking appropriate limits transforms this to an identity for the backstable Schubert polynomials recently introduced by Lam, Lee, and Shimozono. This note identifies some analogues of the latter formula for principal specializations of Schubert polynomials in classical types B, C, and D. We also describe some more general identities for Grothendieck polynomials. As a related application, we derive a simple proof of a pipe dream formula for involution Grothendieck polynomials.
Revised:
Accepted:
Published online:
Keywords: Schubert polynomials, Grothendieck polynomials, Coxeter systems, reduced words.
@article{ALCO_2021__4_2_273_0, author = {Marberg, Eric and Pawlowski, Brendan}, title = {Principal specializations of {Schubert} polynomials in classical types}, journal = {Algebraic Combinatorics}, pages = {273--287}, publisher = {MathOA foundation}, volume = {4}, number = {2}, year = {2021}, doi = {10.5802/alco.148}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.148/} }
TY - JOUR AU - Marberg, Eric AU - Pawlowski, Brendan TI - Principal specializations of Schubert polynomials in classical types JO - Algebraic Combinatorics PY - 2021 SP - 273 EP - 287 VL - 4 IS - 2 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.148/ DO - 10.5802/alco.148 LA - en ID - ALCO_2021__4_2_273_0 ER -
%0 Journal Article %A Marberg, Eric %A Pawlowski, Brendan %T Principal specializations of Schubert polynomials in classical types %J Algebraic Combinatorics %D 2021 %P 273-287 %V 4 %N 2 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.148/ %R 10.5802/alco.148 %G en %F ALCO_2021__4_2_273_0
Marberg, Eric; Pawlowski, Brendan. Principal specializations of Schubert polynomials in classical types. Algebraic Combinatorics, Volume 4 (2021) no. 2, pp. 273-287. doi : 10.5802/alco.148. http://www.numdam.org/articles/10.5802/alco.148/
[1] Schubert polynomials for the classical groups, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 443-482 | DOI | MR | Zbl
[2] A bijective proof of Macdonald’s reduced word formula, Algebr. Comb., Volume 2 (2019) no. 2, pp. 217-248 | DOI | MR | Zbl
[3] Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 345-374 | DOI | MR | Zbl
[4] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[5] Reduced words and plane partitions, J. Algebraic Combin., Volume 6 (1997) no. 4, pp. 311-319 | DOI | MR | Zbl
[6] Schubert polynomials and the nil-Coxeter algebra, Adv. Math., Volume 103 (1994) no. 2, pp. 196-207 | DOI | MR | Zbl
[7] Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, J. Combin. Theory Ser. A, Volume 160 (2018), pp. 217-260 | DOI | MR | Zbl
[8] Involution pipe dreams (2019) (https://arxiv.org/abs/1911.12009)
[9] Construction of double Grothendieck polynomials of classical types using idCoxeter algebras, Tokyo J. Math., Volume 39 (2017) no. 3, pp. 695-728 | DOI | MR | Zbl
[10] Back stable Schubert calculus (2018) (https://arxiv.org/abs/1806.11233)
[11] Notes on Schubert Polynomials, Laboratoire de combinatoire et d’informatique mathématique (LACIM), Université du Québec à Montréal, 1991
[12] A symplectic refinement of shifted Hecke insertion, J. Combin. Theory Ser. A, Volume 173 (2020), 105216, 50 pages | DOI | MR | Zbl
[13] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), 107299, 43 pages | DOI | MR | Zbl
[14] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, 106463, 22 pages | DOI | MR | Zbl
[15] Universal graph Schubert varieties (2019) (https://arxiv.org/abs/1902.09168)
[16] A Markov growth process for Macdonald’s distribution on reduced words (2014) (https://arxiv.org/abs/1409.7714)
Cited by Sources: