Exposé on a conjecture of Tougeron
Annales de l'Institut Fourier, Volume 27 (1977) no. 4, pp. 9-27.

An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if η is an analytic curve on an analytic variety V and f is a formal power series which is convergent when restricted to all curves η on V near η (in the Krull topology), then f is convergent when restricted to V.

Une algèbre d’homomorphismes d’anneaux localisés affines d’une variété algébrique est continue par rapport à la topologie de Krull. Elle peut être ni ouverte ni fermée. Cependant, on montre que l’image induite sur l’anneau local analytique associé est également ouverte et fermée par rapport à la topologie de Krull. Afin de démontrer ceci, on prouve la conjecture suivante de Tougeron : si η est une courbe analytique sur un ensemble analytique V et si f est une série formelle de puissances dont la restriction à toute courbe η sur V dans un voisinage de η (topologie de Krull) est convergente, alors la restriction de f à V est convergente.

@article{AIF_1977__27_4_9_0,
     author = {Becker, Joseph},
     title = {Expos\'e on a conjecture of {Tougeron}},
     journal = {Annales de l'Institut Fourier},
     pages = {9--27},
     publisher = {Imprimerie Durand},
     address = {Chartres},
     volume = {27},
     number = {4},
     year = {1977},
     doi = {10.5802/aif.670},
     zbl = {0337.14002},
     mrnumber = {58 #10904},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.670/}
}
TY  - JOUR
AU  - Becker, Joseph
TI  - Exposé on a conjecture of Tougeron
JO  - Annales de l'Institut Fourier
PY  - 1977
DA  - 1977///
SP  - 9
EP  - 27
VL  - 27
IS  - 4
PB  - Imprimerie Durand
PP  - Chartres
UR  - http://www.numdam.org/articles/10.5802/aif.670/
UR  - https://zbmath.org/?q=an%3A0337.14002
UR  - https://www.ams.org/mathscinet-getitem?mr=58 #10904
UR  - https://doi.org/10.5802/aif.670
DO  - 10.5802/aif.670
LA  - en
ID  - AIF_1977__27_4_9_0
ER  - 
%0 Journal Article
%A Becker, Joseph
%T Exposé on a conjecture of Tougeron
%J Annales de l'Institut Fourier
%D 1977
%P 9-27
%V 27
%N 4
%I Imprimerie Durand
%C Chartres
%U https://doi.org/10.5802/aif.670
%R 10.5802/aif.670
%G en
%F AIF_1977__27_4_9_0
Becker, Joseph. Exposé on a conjecture of Tougeron. Annales de l'Institut Fourier, Volume 27 (1977) no. 4, pp. 9-27. doi : 10.5802/aif.670. http://www.numdam.org/articles/10.5802/aif.670/

[1] S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, Academic Press, 1966. | MR | Zbl

[2] S. Abhyankar and M. Vander Put, Homomorphism of analytic local rings, Creile's J., 242 (1970), 26-60. | Zbl

[3] M. Artin, On solutions to analytic equations, Invent. Math., 5 (1968), 277-291. | MR | Zbl

[4] A. M. Gabrielov, The formal relations between analytic functions, Funck, Analiz. Appl., 5 (1971), 64-65. | MR | Zbl

[5] A. M. Gabrielov, Formal relations between analytic functions, Izv. Akad. Nauk. SSR, 37 (1973), 1056-1088. | Zbl

[6] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math., 79 (1964), 109-326. | MR | Zbl

[7] M. Nagata, Local Rings, Interscience Publishers, 1962. | MR | Zbl

[8] J. C. Tougeron, Courbes analytiques sur un germe d'espace analytique et applications, Ann. Inst. Fourier, Grenoble, 26, 2 (1976), 117-131. | Numdam | MR | Zbl

Cited by Sources: