We study totally geodesic codimension smooth foliations on Lorentzian manifolds. We are in particular interested in the relations between riemannian flows and geodesic foliations. We prove that, up to a -cover, any Seifert bundle admits such a foliation.
Nous étudions les feuilletages lisses totalement géodésiques de codimension des variétés lorentziennes. Nous nous intéressons notamment aux relations entre les flots riemanniens et les feuilletages géodésiques. Nous prouvons que, quitte à prendre un revêtement d’ordre , tout fibré de Seifert possède un tel feuilletage.
Mot clés : feuilletages totalement géodésiques, flots riemanniens
Keywords: Totally geodesic foliations, riemannian flows
@article{AIF_2005__55_4_1411_0, author = {Mounoud, Pierre}, title = {Feuilletages totalement g\'eod\'esiques, flots riemanniens et vari\'et\'es de {Seifert}}, journal = {Annales de l'Institut Fourier}, pages = {1411--1438}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2128}, mrnumber = {2157171}, zbl = {1080.53024}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2128/} }
TY - JOUR AU - Mounoud, Pierre TI - Feuilletages totalement géodésiques, flots riemanniens et variétés de Seifert JO - Annales de l'Institut Fourier PY - 2005 SP - 1411 EP - 1438 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2128/ DO - 10.5802/aif.2128 LA - fr ID - AIF_2005__55_4_1411_0 ER -
%0 Journal Article %A Mounoud, Pierre %T Feuilletages totalement géodésiques, flots riemanniens et variétés de Seifert %J Annales de l'Institut Fourier %D 2005 %P 1411-1438 %V 55 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2128/ %R 10.5802/aif.2128 %G fr %F AIF_2005__55_4_1411_0
Mounoud, Pierre. Feuilletages totalement géodésiques, flots riemanniens et variétés de Seifert. Annales de l'Institut Fourier, Volume 55 (2005) no. 4, pp. 1411-1438. doi : 10.5802/aif.2128. http://www.numdam.org/articles/10.5802/aif.2128/
[A-S] A note on actions of the cylinder , Topology and its applications, Volume 123 (2002), pp. 533-535 | DOI | MR | Zbl
[B-M-T] Foliations admitting a transverse connection; applications in dimension (à paraître dans Ergodic Theory Dynam. Systems.)
[C-C1] Foliations I, Graduate Studies in Math., Volume 23 | Zbl
[C-C2] Endsets of exceptional leaves; a theorem of G. Duminy (preprint) | Zbl
[C-G] Feuilletages totalement géodésiques, An. Acad. Brasil Cienc., Volume 53 (1981) no. 3, pp. 427-432 | MR | Zbl
[Ca] Flots riemanniens, Structure transverse des feuilletages, Toulouse 1982 (Asterisque), Volume 116 (1984), pp. 31-52 | Numdam | Zbl
[E-H-N] Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv., Volume 56 (1981), pp. 638-660 | DOI | MR | Zbl
[G-K] The fundamental group of a compact flat Lorentz space form is virtually polycyclic., J. Differential Geom., Volume 19 (1984) no. 1, pp. 233-240 | MR | Zbl
[G-N] A Hochschild homology Euler characteristic for circle actions, K-Theory, Volume 18 (1999), pp. 99-135 | DOI | MR | Zbl
[Gh] Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. (1993) no. 78, pp. 163-185 | Numdam | MR | Zbl
[He] Feuilletages en cylindres (Lecture Notes in Math.), Volume 597 (1977), pp. 252-270 | Zbl
[Kl] Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | MR | Zbl
[Le] Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv., Volume 32 (1957-58), pp. 215-223 | MR | Zbl
[M-R] Relations de conjugaison et de cobordisme entre certains feuilletages, Publ. math. IHES, Volume 43 (1973), pp. 143-168 | Numdam | MR | Zbl
[Mo1] Dynamical properties of the space of Lorentzian metrics, Comment. Math. Helv., Volume 78 (2003), pp. 463-485 | DOI | MR | Zbl
[Mo2] Complétude et flots nul-géodésiques en géométrie lorentzienne, Bulletin de la SMF, Volume 132 (2004), pp. 463-475 | Numdam | MR | Zbl
[Mol] Riemannian foliations, Progress in mathematics (1988) | MR | Zbl
[R-R] Reeb foliations, Annals of Math., Volume 91 (1970), pp. 1-24 | DOI | MR | Zbl
[Sa] Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier, Volume 50 (2000) no. 1, pp. 257-284 | DOI | Numdam | MR | Zbl
[Wo] Bundle with totally disconnected structure group, Comment. Math. Helv., Volume 46 (1971), pp. 257-273 | DOI | MR | Zbl
[Yo] Examples of Lorentzian geodesible foliations of closed three manifolds having Heegard splitting of genus one, Tohoku Math. J., Volume 56 (2004), pp. 423-443 | DOI | MR | Zbl
[Ze1] Geodesic foliations in Lorentz 3-manifolds, Comment. Math. Helv., Volume 74 (1999), pp. 1-21 | DOI | MR | Zbl
[Ze2] Isometry group and geodesic foliations of Lorentz manifolds. Part II: geometry of analytic Lorentz manifold with large isometry groups, Geom. func. anal., Volume 9 (1999), pp. 823-854 | DOI | MR | Zbl
Cited by Sources: