The Pontryagin algebra of a -elliptic space satisfy the Auslander-Buchsbaum-Serre theorem. We give some characterizations of the -elliptic spaces with of finite global dimension and with in the Anick range. We also introduce an “-odd” spectral sequence and complete the results obtained by A. Murillo in the rational case.
L’algèbre de Pontryagin d’un espace -elliptique vérifie le théorème d’Auslander-Buchsbaum-Serre. Nous donnons ici plusieurs caractérisations des espaces -elliptiques tels que gldim( et lorsque est dans le domaine d’Anick. Nous introduisons aussi une suite spectrale “impaire des ” et complétons les résultats obtenus par A. Murillo dans le cas rationnel.
@article{AIF_1999__49_1_333_0, author = {Rami, Youssef}, title = {Dimension globale et classe fondamentale d'un espace}, journal = {Annales de l'Institut Fourier}, pages = {333--350}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {1}, year = {1999}, doi = {10.5802/aif.1676}, mrnumber = {2000c:55012}, zbl = {0920.55009}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1676/} }
TY - JOUR AU - Rami, Youssef TI - Dimension globale et classe fondamentale d'un espace JO - Annales de l'Institut Fourier PY - 1999 SP - 333 EP - 350 VL - 49 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1676/ DO - 10.5802/aif.1676 LA - fr ID - AIF_1999__49_1_333_0 ER -
%0 Journal Article %A Rami, Youssef %T Dimension globale et classe fondamentale d'un espace %J Annales de l'Institut Fourier %D 1999 %P 333-350 %V 49 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1676/ %R 10.5802/aif.1676 %G fr %F AIF_1999__49_1_333_0
Rami, Youssef. Dimension globale et classe fondamentale d'un espace. Annales de l'Institut Fourier, Volume 49 (1999) no. 1, pp. 333-350. doi : 10.5802/aif.1676. http://www.numdam.org/articles/10.5802/aif.1676/
[1] Hopf algebras up to homotopy, J. Amer. Math. Soc., 2 (1989), 417-453. | MR | Zbl
,[2] Depth and Toomer's invariant, à paraître dans, Topology and its Applications. | Zbl
,[3] La dichotomie elliptique-hyperbolique en homotopie rationnelle, Astérisque, 176 (1989). | Numdam | MR | Zbl
,[4] Rational L-S category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-73. | MR | Zbl
and ,[5] Mod p loop space homology, Invent. Math., 95 (1989), 247-262. | MR | Zbl
, and and ,[6] The Ganea conjecture and the L-S category of Poincaré duality complexes, Preprint Univ. Nice (1997).
, and ,[7] The Homotopy Lie algebra for finite complexes, Publ. I.H.E.S., 56 (1983), 89-96. | Numdam
, and ,[8] Gorenstein spaces, Adv. in Maths, 71 (1988), 92-112. | MR | Zbl
, and ,[9] Elliptic Hopf algebras, J. London. Math. Soc., (2) 43 (1991), 545-555. | MR | Zbl
, and ,[10] Hopf algebres of polynomial growth, J. Algebra, 125 (1989), 408-417. | MR | Zbl
, and ,[11] Rational Homotopy Theory, Preprint Université d'Angers (1997). | Zbl
, and ,[12] Hopf algebras and a counterexample to a conjecture of Anick, J. of Algebra, 169 (1994), 176-193. | MR | Zbl
, and ,[13] The radical of the homotopy Lie algebra, Amer. J. Math., 110 (1988), 301-322. | MR | Zbl
, , , and ,[14] Connexions, Curvatures and Cohomology, Vol. III, Academic Press, New York, 1975. | Zbl
, and ,[15] Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. | MR | Zbl
,[16] Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra, 83 (1992), 237-282. | MR | Zbl
,[17] Notion of category in differential algebra, in Algebraic Topology — Rational Homotopy, Lecture Notes in Mathematics, 1318 (1988), 138-154. | MR | Zbl
and ,[18] On category, in the sense of Lusternik-Schnirelmann, Topology, 17 (1978), 331-348. | Zbl
,[19] The evaluation map of some Gorenstien algebras, J. Pure. Appl. Algebra, 91 (1994), 209-218. | MR | Zbl
,[20] The Top cohomology class of certain spaces, J. Pure. App. Algebra, 84 (1993), 209-214. | MR | Zbl
,[21] Algèbre locale, Multiplicités, Lecture Notes in Mathematics, 11 (1975). | Zbl
,[22] Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., 47 (1978), 269-331. | Numdam | MR | Zbl
,[23] Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z., 138 (1974), 123-143. | MR | Zbl
,Cited by Sources: