Extending Tamm's theorem
Annales de l'Institut Fourier, Volume 44 (1994) no. 5, pp. 1367-1395.

We extend a result of M. Tamm as follows:

Let f:A,A m+n , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions xx r :(0,),r. Then there exists N such that for all (a,b)A, if yf(a,y) is C N in a neighborhood of b, then yf(a,y) is real analytic in a neighborhood of b.

On généralise un résultat de M. Tamm :

Soit f:A, A m+n , définissable dans le corps ordonné des nombres réels augmenté par toutes les fonctions analytiques réelles sur les cubes compacts et toutes les puissances xx r :(0,), r. Alors, il existe N telle que pour chaque (a,b)A, la fonction yf(a,y) est C N dans un voisinage de b si et seulement si yf(a,y) est analytique dans un voisinage de b.

@article{AIF_1994__44_5_1367_0,
     author = {Dries, Lou van den and Miller, Chris},
     title = {Extending {Tamm's} theorem},
     journal = {Annales de l'Institut Fourier},
     pages = {1367--1395},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {5},
     year = {1994},
     doi = {10.5802/aif.1438},
     zbl = {0816.32004},
     mrnumber = {96g:32016},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1438/}
}
TY  - JOUR
AU  - Dries, Lou van den
AU  - Miller, Chris
TI  - Extending Tamm's theorem
JO  - Annales de l'Institut Fourier
PY  - 1994
DA  - 1994///
SP  - 1367
EP  - 1395
VL  - 44
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1438/
UR  - https://zbmath.org/?q=an%3A0816.32004
UR  - https://www.ams.org/mathscinet-getitem?mr=96g:32016
UR  - https://doi.org/10.5802/aif.1438
DO  - 10.5802/aif.1438
LA  - en
ID  - AIF_1994__44_5_1367_0
ER  - 
%0 Journal Article
%A Dries, Lou van den
%A Miller, Chris
%T Extending Tamm's theorem
%J Annales de l'Institut Fourier
%D 1994
%P 1367-1395
%V 44
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1438
%R 10.5802/aif.1438
%G en
%F AIF_1994__44_5_1367_0
Dries, Lou van den; Miller, Chris. Extending Tamm's theorem. Annales de l'Institut Fourier, Volume 44 (1994) no. 5, pp. 1367-1395. doi : 10.5802/aif.1438. http://www.numdam.org/articles/10.5802/aif.1438/

[AM] S. Abhyankar and T. Moh, Reduction theorem for divergent power series, J. Reine Angew. Math., 241 (1970), 27-33. | MR | Zbl

[BM] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. | Numdam | MR | Zbl

[BS] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77-112. | MR | Zbl

[DD] J. Denef and L. Van Den Dries, p-adic and real subanalytic sets, Ann. of Math., 128 (1988), 79-138. | MR | Zbl

[D1] L. Van Den Dries, Remarks on Tarski's problem concerning (ℝ, +, ., exp), Logic Colloquium 1982, eds. G. Lolli, G. Longo and A. Marcja, North Holland, Amsterdam (1984), 97-121. | MR | Zbl

[D2] L. Van Den Dries, A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15 (1986), 189-193. | MR | Zbl

[D3] L. Van Den Dries, Tame topology and o-minimal structures, (monograph in preparation). | Zbl

[DMM] L. Van Den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. | MR | Zbl

[DM] L. Van Den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19-56. | MR | Zbl

[H] R. Hardt, Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., 102 (1980), 291-302. | MR | Zbl

[KPS] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593-605. | MR | Zbl

[KR] T. Kayal and G. Raby, Ensembles sous-analytiques: quelques propriétés globales, C. R. Acad. Sci. Paris, Sér. I Math., 308 (1989), 521-523. | MR | Zbl

[K] K. Kurdyka, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble), 38-1 (1988), 133-156. | Numdam | MR | Zbl

[M1] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc., 122 (1994), 257-259. | MR | Zbl

[M2] C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. | MR | Zbl

[M3] C. Miller, Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., (to appear). | Zbl

[P] W. Pawlucki, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32 (1984), 556-560. | MR | Zbl

[PS] A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565-592. | MR | Zbl

[T] M. Tamm, Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. | MR | Zbl

[To] J.-Cl. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier (Grenoble), 41-4 (1991), 823-840. | Numdam | MR | Zbl

[W] A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Jour. Amer. Math. Soc., (to appear). | Zbl

Cited by Sources: