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EXTENDING TAMM^S THEOREM

by L. van den DRIES & C. MILLER

Introduction.

The theorem of M. Tamm [T] referred to in the title of this paper can
be stated as follows:

Given a finitely subanalytic function f : U —>- R on an open set
U C W1, there is a natural number N such that for all open U' C U, if
f r U ' is C N , then f f U ' is analytic.

(Here and throughout this paper, "analytic" means "real analytic".)

"Finitely subanalytic" [D2] is the same as "globally subanalytic"
[KR], and is a better behaved notion than "subanalytic". We give several
definitions of "finitely subanalytic" below. Here we just mention that
bounded subanalytic sets in R71 as well as their complements are finitely
subanalytic. (A map / : A —^ W1 with A C R771 is finitely subanalytic if its
graph is a finitely subanalytic subset of R771"1"71.)

In this paper we extend Tamm's theorem simultaneously in two ways:

(1) We allow U and / to depend on parameters, with an N indepen-
dent of the parameters.
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(2) We allow / to be definable, not just in terms of addition, multi-
plication, and analytic functions on sets [—1,1]771 for m € N — this would
give us just the finitely subanalytic functions — but also in terms of the
power functions x ̂  x7' : (0, oo) —^ R, which are not subanalytic at 0 for
irrational r.

In (2) above, "definable" is a certain technical notion arising from
logic; we introduce it without referring explicitly to logical concepts.

DEFINITION. — A structure S on R consists of a collection Sn of
subsets ofR", for each n € N, such that

(1) Sn is a boolean algebra of subsets ofR71, in particular R71 € Sn;

(2) Sn contains the diagonals {( .^i , . . . ,Xn) G R7'1 : xi = Xj} for
1 <, i < j < n;

(3) if A € Sn, then A x R and R x A belong to <Sn+i;

(4) if A e <?n+i, then 7r(A) € Sn, where TT : R7^1 —^ W1 is the
projection on the first n coordinates.

We say that a set A C R72 belongs to S if A e Sn, and that a map
/ : A —> R^ with A C R71 belongs to S if its graph F(/) := {(x, f{x)) e
W^ : x € A} belongs to S. Instead of "A belongs to 5" we also say "«S
contains A"; (similarly with maps).

Given structures S = {Sn) and <?7 = (Sn) on R we put S C S '
if <?n c «S^ for all n € N; this defines a partial order on the set of all
structures on R. Given sets A^ C R^1) (i in some index set J), and functions
/j : Bj —> R with Bj C R^) (j in some index set J), there is clearly a
smallest structure on R containing all sets A% and all functions /j; we call
this the structure on R generated by the Ai ^s and the fj ^s. (A function
f : R° = {0} —-)• R is identified with the corresponding real constant /(O).)
A set A C Rn is said to be definable in terms of the Ai's and the fj ^, or
to be definable in (R, (A^)^z/(/j)jej)5 if ^ belongs to the structure on R
generated by the A^'s and the /j's; (similarly with maps). For example, by
Tarski-Seidenberg, a set X C R71 is definable in (R, +, •, (r)reR) if and only
if X is semialgebraic.

These notions all make sense with R replaced by any set. However,
of special interest for analysis and topology are the "o-minimal" structures
on R, which are the simplest structures on R compatible with the ordering
of the real line.
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DEFINITION. — A structure S on R is o-minimal ("order-minimal^)
if

(51) {(x, y) : x < y} e <?2, and {a} € <?i for each a € R;

(52) each set in 6\ is a unite union of intervals (a, &), —oo <: a < b <:
+00, and points {a}.

(We think of (S2) as a minimality requirement, since each structure on
R satisfying (Sl) must contain at least all finite unions of intervals and
points.) If an o-minimal structure S is generated by sets Ai C R771^) (z in
some index set I ) and functions fj : Bj —^ R with Bj C R"^) (j in some
index set J), then we also say that (R, (A^)^j, (fj)jej) is o-minimal.

Each subset of R71 belonging to an o-minimal structure <? on R has
only finitely many connected components, and each component also belongs
to <S. The class of semialgebraic sets is an o-minimal structure on R, as is
the larger class of finitely subanalytic sets: B C R71 is finitely subanalytic
if and only if B = /(A) for some bounded semianalytic set A C R771 and
some semialgebraic map / : R771 -^ R"'. (A map from a subset of R771 into
W1 is semialgebraic if its graph is a semialgebraic subset of R77^71; unlike
some authors, we do not require semialgebraic maps to be continuous.)

DEFINITION. — A structure on (R, +, •) is a structure on R contai-
ning the graphs of both addition and multiplication.

Let <S be a structure on (R,+,-). Then the usual order relation <
necessarily belongs to <?; the set {(a;, y) € R2 : x < y} is the projection of

{(x,y,z) eR3 : y = x - } - z 2 } ,

and {{x,y) G R2 : x < y} = {(x,y) e R2 : x < y} - {{x,y) C R2 : x = y}.
Given a set X G <?yi, its closure and interior are also in Sn' Given a function
/ : U —r R belonging to S with U open in R71, the set of points in U where
/ is differentiable belongs to <S, and if / is differentiable on [7, then each
partial derivative also belongs to S. Throughout this paper, we use many
such basic facts (familiar to logicians); proofs are left as exercises.

An o-minimal structure on (R, +, •) shares many of the nice properties
of the class of semialgebraic sets; the sets in such a structure can be
triangulated by means of homeomorphisms in the structure, and Hardt^s
semialgebraic triviality theorem [H] extends to such o-minimal structures
on R. The theory of o-minimal structures is a wide-ranging generalization
of semialgebraic and subanalytic geometry; one can view the subject as a
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realization of Grothendieck's idea of topologie moderee, (outlined in the
unpublished notes Esquisse d'un programme, 1984). The first papers on
o-minimality are [Dl], [PS] and [KPS]; for an extensive and systematic
account, see [D3].

We now return to the subject of this paper.

Notation. — Given a subfield K of R, R^ denotes the set R
equipped with

(1) addition and multiplication (functions on R2),

(2) all analytic functions / : [-1,1^ -> R, for all m € N,

(3) the power functions x i—> X7' : (0, oo) —^ R for all r € K.

Convention. — In this paper we say that f : A —> B with A C R771

and B C R71 is analytic if / is the restriction to A of an analytic map
g : U —^ W1 with U an open neighborhood of A in R7" and g(A) C B.
We also say that such a map / is analytic at a point a G A if there is an
open set U C R71 with a € U C A such that / f U is analytic; (note then
that a 6 int(A)). We also work similarly with "analytic" replaced by "C^",
1 <, p < oo.

The sets definable in R^ form an o-minimal structure on (R,+,-),
and some basic properties of this structure are established in [M2].

For K = Q the sets definable in R^ are exactly the finitely subana-
lytic sets (see [DD], [D2]), and in fact the power functions xq for g € Q are
superfluous here, since they are definable in terms of just multiplication.

We can now give a precise formulation of our extension of Tamm's
theorem:

MAIN THEOREM. — Let f : A —> R be definable in R^, A C R171^71.
Then there exists TV € N such that for all x C R771 and all open sets U C R71

with U C A^ := [y e V : (x,y) C A}, if f(x,-) is C^ on U, then f(x,-)
is analytic on U.

(We let f{x^-) denote the function y ̂  f ( x ^ y ) : Ax —^ R.)

COROLLARY. — Let A C W1 be definable in R^,. Then Sing(A),
the set of singular points of A, is definable in R^.

(See §5 for a definition of Sing(A)).
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We cannot follow here Tamm's original proof [T], nor the proof
by Bierstone and Milman [BM], since these depend on properties of
subanalytic sets not shared by all sets definable in R^ if K ^ Q. Instead
we adapt (and simplify in some places) the proof of Tamm's theorem given
by Kurdyka [K]. One important tool used in [K] is Pawlucki's "Puiseux
expansion with parameters for subanalytic functions" from [P]. Much of the
technical work in this paper goes into establishing the Expansion Theorem
of §4, which for K = Q is a somewhat stronger version of Pawhicki's result.

Here then is a brief outline of the contents of this paper. In §1
we review some basic properties of o-minimal structures needed for our
purpose. In §2, we discuss Gateaux differentiability and its relation to
analyticity and o-minimality. In §3, some results about R^ are given. The
statement and proof of the aforementioned Expansion Theorem constitutes
§4. Finally, in §5, we prove the Main Theorem and some corollaries.

1. o-minimal structures on

Throughout this section, S denotes some fixed, but arbitrary, o-
minimal structure on R. "Definable" means "belonging to <S".

1.1. MONOTONICITY THEOREM. — Let f : R —> R be definable.
Then there exist (extended) real numbers — o o = a o < a i < - - - <
ON < CLN-\-I = +00 such that f \ (0^,0^+1) is either constant, or strictly
monotone and continuous, for n = 0 , . . . , N.

(See [Dl] for a proof.)

Remarks.

(1) The statement holds with "differentiable" instead of "continuous"
if<S is an o-minimal structure on (R, +, •); (see [Dl]). Consequently, the ring
of germs at +00 of all definable functions / : R —> R is a Hardy field. The
converse is also true: a structure 7^ on (R, +, •) containing all singletons
{r} for r e R is o-minimal if every function / : R —^ R belonging to K
is of constant sign (-1, 0 or 1) for all sufficiently large (depending on /)
positive real arguments; (see [DMM]).

(2) For every presently-known o-minimal structure on (R,+,«), the
statement holds true with "analytic" in place of "continuous".
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Cells and cell decomposition.

We define the cells in R71 as certain kinds of definable subsets of R71;
the definition is by induction on n:

(1) The cells in R (= R1) are just the points {r} and the open intervals
(a, b), —oo < a < b < +00;

(2) Let C C R71 be a cell and let /, g : C -> R be definable continuous
functions such that / < g on (7, then (/, g) := {(x, r) € C x R : f(x) < r <
g{x)} is a cell in M71"^1; also, given definable continuous / : C —> R on a cell
C in R71, the graph r(/) C C x R and the sets {(x, r) e C x R: r < f(x)},
{(x,r) 6 C x R: f(x) < r} and C x R are cells in R^.

(We also consider R° = {0} as a cell in R°; so (2) even holds for n = 0.)

The dimension of a cell C in R71, denoted dim(G), is defined by
induction on n:

(1) For n = 1, put dim(C) := 0 if C is a singleton, and put
dim(C') := 1 if C is an open interval.

(2) Let C be a cell in R^. Then 7r(G) is a cell in R^, where
TT : R714'1 —> R is the projection on the first n coordinates. Put dim(C') :=
dim(7r(C')) ifCis of the form r(/) for some definable continuous / : 7r((7) —>'
M, and put dim((7) := 1 4- dim(7r((7)) otherwise.

(We also put dim(R°) := 0.)

Note. — Clearly, if C is a cell in R71 and C is open, then dim((7) = n.

1.2. Given i = ( z i , . . . , Z m ) with 1 < i\ < • • • < im < n^ define
TTi : W1 —^ R771 by 7r^(a; i , . . . , Xn) := (xi^, • • • , Xi^). It is easy to check that
if C is a cell in R71 of dimension m, then there is some i = ( z i , . . . , im) as
above such that TT^ maps C homeomorphically onto an open cell in R771.
Note also that TT^ f C is definable.

A decomposition of R71 is a special kind of partition of R71 into finitely
many cells. Definition is by induction on n:

(1) A decomposition of R1 (= R) is a collection of intervals and points
of the form

{(-co, ai), (ai, 02), • • . , (afc, +co), {ai} , . . . , {Ofe}},
with ai < ... < dk real numbers. (For k = 0 this is just {(-co, oo)}.)

(2) A decomposition of R71"^1 is a finite partition of R71'̂ "1 into cells
A such that the set of projections 7r(A) is a decomposition of R71, where
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TT : R"^1 —^ R71 is the projection on the first n coordinates. (Note that
different cells can have the same image under TT.)

In a similar manner, one can define Cp cells and CP decompositions,
by requiring that the functions occurring in part (2) of the definition of cells
be CP, for p a positive integer or p = oo; similarly for analytic cells and
analytic decompositions. Each CP cell in R71 is a connected CP submanifold
of R71, CP diffeomorphic via some coordinate projection TT^ f C to an open
Cp cell in R771, for some m < n; similarly with "C^" replaced by "analytic".

Note. — Cells and decompositions are always relative to some
particular structure; (the structure S throughout this section).

The projection TrC of a decomposition C of R771"^71 onto M771 is the
collection {^(C) : C € C}, where TT : R'714'7'1 —^ R is the projection map onto
the first m coordinates. (Note that TI-C is then a decomposition of R971.) A
decomposition of R71 is said to partition a set A C R71 if A is a union of
cells in the decomposition.

THEOREM. — The structure S admits cell decomposition; i.e.,

(In) given definable sets A i , . . . , Ak C R71, there is a decomposition of
R77' into cells partitioning A i , . . . , A^,

(IIn) for every definable function f : A —^ R, A C R71, there is a
decomposition of R71 into cells partitioning A such that each restriction
f \ C : C —^ R is continuous for each cell C C A in the decomposition.

(See [PS] and [KPS].)

Remark. — If <S is moreover a structure on (R, +, •), then the state-
ment holds with "C^ cells" and "C^" in place of "cells" and "continuous",
respectively, for every fixed positive integer JV; i.e., S admits C1^ cell de-
composition. It is an open question at present as to whether or not every
o-minimal structure on (R, +, •) admits C°° cell decomposition, or even
analytic cell decomposition.

Orders of growth of definable functions.

A structure 7^ on R is exponential if the exponential function ex

belongs to 7^; 7^ is polynomially bounded if for every function / : R —> R
belonging to 7^, there exists some TV € N such that ultimately \f(x)\ < x1^.
(Ultimately abbreviates "for all sufficiently large positive arguments".) If
K is generated by sets Ai C R^) (% in some index set I ) and functions
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fj : Bj -^ R with Bj C R^') (j in some index set J), then we also say
that (R,(A^)^j,(/j)jej) is exponential if 7^ is exponential; similarly for
polynomially bounded.

1.3. THEOREM (Growth Dichotomy). — Let % be an o-minimal
structure on (R, +, •). Then either K is exponential, or K is polynomially
bounded. If K is polynomially bounded, then for every f : R —> R
belonging to 7?., either f is ultimately identically equal to 0, or there exist
nonzero c e R and a real power function x7' belonging to 7^ such that
f(x) == ex7' + o(x'r) as x —> +00.

(See [Ml] for the proof.)

The first known example of an exponential o-minimal structure on
(R, +, •) is due to Wilkie [W], who established that the structure on R ge-
nerated by addition, multiplication, all real constants, and exponentiation
is o-minimal. The structure on R generated by addition, multiplication,
exponentiation and all analytic functions / : [-1,1]771 —^ R for all m e N, is
o-minimal and admits analytic cell decomposition; (see [DM] and [DMM]).

Polynomially bounded o-minimal structures on (R, +, •).

We will be particularly concerned in this paper with the polynomially
bounded case. For the remainder of this section, we assume that S is a
polynomially bounded o-minimal structure on (R, 4-, •).

The following variant of a result from [M2] is crucial to later develop-
ments:

1.4. THEOREM (Piecewise Uniform Asymptotics). — Let / : A x
R -^ R be definable, A C R^ Then there exist r i , . . . , re € R such that for
all x € A, either t ̂  f(x, t) : R -^ R vanishes identically for all sufficiently
small (depending on x ) positive t, or f{x,t) = cF1 + o^1) as t —> 04' for
some i e {1 , . . . , £} and c = c(x) € R, c -^ 0.

Remark. — A "definable" version of the Lojasiewicz inequality
follows from this fact; (see [M2]).

Let U be an open subset of R71, a G (7, and let / : U —^ R be given.
If / is C1^ at a and all partial derivatives of / of order less than or equal
to N vanish at a, then / is said to be N-Qat at a. If / is A^-flat at a for all
TV € N then / is said to be fiat at a.
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1.5. THEOREM (Uniform Bounds on Orders of Vanishing). — Let
f : A -> R be definable, A C R771-^. Then there exists N e N such that for
all (x, y) e A, ify e int(Aa;) and f(x, -) is N-flat at y , then f(x, z) = 0 for
all z € Ax sufficiently close to y.

(See [M3] for the proof.)

In the special case that m = 0 and A is open, we have that for all
y G A, if / is flat at z/, then / vanishes identically in a neighborhood of y.
It follows easily then that the set of all definable C°° functions f : U —> R,
for a fixed connected definable open set U C R71, is an integral domain; we
denote it by C^(U). Furthermore, C^(U) is a quasianalytic class', i.e., if
/ € C^(U) and / is flat at some XQ € £/, then / = 0.

The descending chain condition on zero sets.

Given / : A -^ R71, A C R7^, put Z(/) := {a € A : /(a) = 0}. Note
that if / is definable, then so is Z(f).

1.6. PROPOSITION. — Assume that S admits C°° cell decomposi-
tion. Then given a family (fi : A —^ R)%eN of definable C°° functions,
A C W1, there exists M e N such that

HZ(/,)= H^CA)-
i€N i<,M

Proof. — To avoid trivialities, let us suppose that 0 7^ Z{fo} ̂  A.
By taking a C°° decomposition of W1 partitioning A, we may assume that
A is a C°° cell; in particular, A is connected. We proceed now by induction
on dim(A) and n.

The result is trivial if dim(A) = 0. So suppose that dim(A) = d > 0,
and that the result holds for all lower values of d and n.

If A is nonopen, then A is C°° diffeomorphic via some coordinate
projection TT = TT^ f A. to an open cell 7r(A) C R771 with m < n; (see 1.2).
By the inductive assumption, we have

HZCAOTT-^ HZCAOTT- 1 )
t€:N i<,M

for some M € N; thus,

n^(/i)= H^)'
i€N i<M
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as desired.

Now suppose that A is open. Take a partition P of Z(fo) into finitely
many C°° cells £?; note that dim(B) < d, since otherwise /o would vanish
on a nonempty open subset of A, hence /o = 0 (by quasianalyticity). By
the inductive assumption, for each B e P there exists M(B) e N such that

Hence,

HZ(.MB)= F| Z{f,\B).
i€N z<M(B)

n ZCA) = n zu^
2€N z<M

where M := max{M(B) : B C P}. D

Remark. — The assumption that <? is polynomially bounded and
admits C°° cell decomposition may be removed if one assumes that A is
a definable analytic submanifold of W1 and that each fi is analytic; (see
Tougeron [To]),,

2. Gateaux differentiability, analyticity and o-minimality.

In this section, we give a characterization of analyticity (at a point)
for real functions that is a slight variant of a result of Bochnak and Siciak
[BS].

First, we reformulate a result of Abhyankar and Moh on power series:

2.1. PROPOSITION. — Let F(Xi,..., Xn) € R[Xi,... , Xn} and
suppose that for all x e W1 the series F{x^T,... ,XnT) C R[T] is
convergent. Then F(Xi,..., Xn) is convergent.

Proof. — We proceed by induction on n; the case n = 1 is trivial.
Assume the result for n. Let F(Xi,..., Xn^-i) C R[Xi,.... X^+i], and sup-
pose that for all xi,..., Xn+i € M, the series F^T,..., x^iT) C R[r] is
convergent. Let r € R, and x € W. Then the series F(^iT,..., Xr,T, rXnT)
is convergent. By the inductive assumption, the series F(Xi,..., Xn, rXn)
is convergent. It follows then from [AM] that F(Xi,.. . ,Xn) is conver-
gent. Q
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DEFINITION. — Let f : U -^ R be a function, U open in ̂ .xeU.
Let k be a positive integer and suppose that for each y e R", the (partial)
function 11-> f(x +t^/) is k-times differentiable at t = 0. If the map

^"•/^(O^.^K

is given by a homogeneous polynomial in y of degree k, then f is ^-times
Gateaux differentiable at x, or Gk at x. Iff is G^ at x for all k > 0, then
/ is G°° at x.

For / and x as in the preceding definition, if / is Ck at x, then / is
G^ at x. The converse fails; indeed, / can be G°° at a point x, and yet not
even be continuous at x. (For example, consider the characteristic function
of {(x,x2) : x > 0}, which is (?00 at (0,0).)

Notation. — For x C W1, \\x\\ denotes the usual euclidean norm
of x.

2.2. PROPOSITION. — Let U C R71 be open, let x e U. Then
f : U —^ R is analytic at x if and only if f is G°° at x and there exists
e > 0 such that for all y € W1 with \\y\\ ^ 1, the function t ̂  f(x + ty) is
defined and analytic on (—e,e).

Proof. — The forward implication is clear. For the other direction,
it suffices to show the result for U a neighborhood of 0, with x = 0 and
/(O) = 0.

Since / is G°° at 0, for all k > 0 the function ̂  : M71 -^ R defined by

M.),-̂ (0)
is given by a homogeneous real polynomial (^(YI, . . . , Yn} of degree fc. Put

00

F(yi,...,y,):=^(i/A;!)^(yi,...,y,)eRiyi,...,y,];
fc=i

(the "Taylor series" of / at 0).

Let y e M", ||i/|| < 1. Then, for the formal series F, we have
00 00

FQ/iT,.... ynT) = ̂ (1/kWyiT^.... y^T) = ̂ (l/k^y^ e R[r].
fe=i fe=i

Now there exists e > 0 such that f(ty) is defined and

f(ty) = ̂ (l/A;!)^^
fc=i
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for all \t\ < e. Thus, F(z/iT,..., ynT) is convergent. By the previous
proposition, F(YI, . . . , Yn) is convergent, say on some open neighborhood
V C (-e^e^ of 0 € W. Let F also denote the analytic function on V
thus obtained. Then for every line L C R71 through the origin, we have
/ r {V n L) = F \ {V n L). Hence, / \ V = F \ V, and / is analytic
at 0. D

We will need the following fact; (the proof is left to the reader).

2.3. Let n e N. Then for all A; e N there exist points p(fc,l),
... ,p(A;,/^(fc)) € R71 and linear functions a i , . . . , a^( fc ) : R^) —r R such
that for alia- ^R^),

^(fc)
Pk^Y):=^a,(x)M,(Y)eR[Y}

j=i
is the unique homogeneous real polynomial P(Y) of degree k with
P(p(fc,z)) = a^ for z = l , . . . , / ^ ( fc ) , where ^(fc) is the dimension of the
vector space of homogeneous polynomials in Y := (Vi , . . . , Yn) of degree k
over R and Mi(V),... , M^(fc)(V) are the monomials of degree k in Y.

2.4. LEMMA. — Let S be a structure on (R, +, •), and let f : A —> R
belong to «S, A C R^71, such that A^ is open in W1 for all x e R771. Then
for aJi fc > 0 there exists Wk : A x M^ —^ R belonging to S such that for all
(x, y) € A, /(.z-, -) is G^ at ^/ if and only ifwk(x, y , z) = 0 for all 2; € R".

Proof. — For positive integers fc define (f)k '. A x W1 —> R as follows:
if (re, 2/) € A and 11—^ /(a;, y+tz) is fc-times differentiable at 0 for all z € y,
then put

dkf(x,y+tz)(/>k{x,y,z) := ——-^——^(0);

otherwise, put ( l ) k ( x ^ y , z ) := 1. Note that ̂  belongs to <?.

For each k > 0, choose points p(k^ 1),... ,p(fc,/^(A:)) G R71 as in 2.3,
and define Vk '' A x R71 -^ R by
Vk(x, y , z) :=Pk((l>k(x, y,p(k, 1)),..., (j>k{x, y,p(k, /^(fc))), z), (P^ as in 2.3).
Define Wk : A x W1 —> R by w^ := vjc - <j)k- Then Wk belongs to <S, and
for all (x,y) € A, /(a;,-) is G^ at 2/ if and only if Wk(x,y,z) = 0 for all
z e R71. D

2.5. PROPOSITION. — Keep all assumptions and notation as in the
preceding lemma and its proof. Assume in addition that
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(1) S is o-minimal, polynomially bounded and admits C°° cell de-
composition;

(2) A x R71 is a union of sets Bi,. . . , Be, each belonging to S, such
that (f)k r Bi is C00 for all k e N and i e {1, . . . ,£}.

Then there exists N e N such that for all (x, y) G A, if f{x, -) is G^
at y , then f(x, -) is G°° at y.

Proof. — Examining the proof above, we see that then Wk \ Bi is
C°° for all k > 1 and i e {1 , . . . , £}. By 1.6, there exists N e N such that

oo Nn z(wk) = n z{wk).
fe=l k=l

Hence, for all (x,y) e A, /(a;,-) is G°° at ^/ if and only if Wi(x,y,z) = 0
for all i < N and z e R71; i.e., if and only if f(x, -) is G^ at ?/. D

3. Some results on R^.

Throughout the remainder of this paper, K denotes some fixed
subfield ofR; "definable" means "definable in R^ unless stated otherwise.

We will state here some facts (established in [M2]) about R^, and
prove a lemma on definable functions that we will need in the next section.

DEFINITION. — Let G(Xi,.. . , Xm) be a real power series conver-
ging on some open neighborhood U of [-I,!]771 to an analytic function
g : U -> M. Then g : R171 -^ R given by

^ f p ( ^ i^e[-l,ir
[ 0, otherwise

is a restricted analytic function. (For m = 0, g is just the corresponding
real constant.)

Note that g is finitely subanalytic, hence definable.

DEFINITION. — The R^-functions on R" are defined inductively:

(1) The projection functions x ^ Xz : W1 —^ R (i = 1,... ,n) are
R^ -functions on R71.

(2) If f : R71 -. R is an R^-function, then -f is an R^-function
onR71.
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(3) If /, g : W1 -> R are R^ -functions, then both f + ^ and /^ are
R^, -functions on R71.

(4) Jf/:]^71-^]^ is an R^ -function on W, then for each r e K, the
function

a^J-W, iff(x)>0
\ 0, otherwise

is an R^ -function on R71.

(5) Jf/i,..., /^ : R71 -^ R are R^ -functions on W1 and g : W^ -> R is
a restricted analytic function, then the composition ̂ (/i,..., /m) : ̂ n —)> ̂
is an R^ -function on W^.

Note that R^-functions are definable.

3.1. FACTS.

(1) R^ is o-minimal, polynomially bounded, and admits analytic cell
decomposition „

(2) Every definable set in R71 is a unite union of (definable) sets of
the form

[x C R71 : f(x) = O^i {x) < 0,... ,g^(x) < 0},

where /, ̂ i,..., gi are R^-functions on R71.

(3) Given a definable function f : A -^ R, A C R71, there are R ,̂-
functions /i,..., f^ on W1 such that for all a; € R77' there exists i e {1,. . . , i}
with f(x) = fi{x); (i.e., f is given piecewise by R^-functions).

(4) For every definable function f : (0, e) -> R with /(t) ^ 0 for
ail t € (0,^), there exist a convergent reaJ power series F{Y^,...,Yd)
with F(0) 7^ 0 and ro,ri,...,rd € K with ri,...,rd > 0 such that
f(t) = t^F^,..., t^) for all sufficiently small positive t.

(These facts were previously known for the case K = Q; see [DD], [D2],
[DM] and [DMM].)

Remark. — Item (2) above expresses a kind of Tarski-Seidenberg
property for R^, and presents definable sets in a form similar to semialge-
braic sets.

3.2. LEMMA. — Let / : A x (0,1) -^ R be definable, A C R7"
(m > 0). Then A is a disjoint union of definable sets Ai,... ,Ajyf, and
there exist definable analytic functions hi: Ai —> (0,1], (i = 1 , . . . , M) and
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(not necessarily distinct) R^-functions A,..., /M : ̂ m+l -^ ̂  such that
/ \ (0, /iz) is analytic and / \ (0, faz) = fi f (0, /iz) for i = 1 , . . . , M.

(Here, (0, /n) := {(rr, t) : x (E A^ and 0 < t < /^(rr)} for z = 1,..., M.)

Proof. — By 3.1(3), there exist R^-functions /i,..., fe : R77^1 -^ R
such that for all (x^t) C A x (0,1), there is an i e {1 , . . . ,^} with
f(x, t) = fi{x, t). Then for i = 1,.. . , t the sets

B, := {(rr, t) € A x (0,1) : /(^, t) = h{x, t)}

are definable, and A x (0,1) == Bi U ... U Bn. By 3.1(1), there exists
a decomposition C of R771"^1 into (definable) analytic cells partitioning
Bi,. . . ,Bn such that / \ C is analytic and is the restriction to C of an
R^- function, for each cell C eC with C C A x (0,1). Let TT : R^1 -^ R77'
be the projection onto the first m coordinates. Then TI-C is a decomposition
of R771 partitioning A, say that A is the disjoint union of analytic cells
Ai , . . . ,AM € TI-C. It suffices to consider the case that M = 1. By 3.1(1),
we have

k-l k

A x (0,1)= U^^U^-^)
1=1 i=i

where go < ' ' ' < gk "' A —> R are analytic and definable, with go = 0 and
gk = 1. Now put h :=•- g\. D

4. The Expansion Theorem.

The goal of this section is to prove a "parametric" version of 3.1(4).

It will be convenient to introduce some working definitions and
notation.

Given tuples of distinct variables X := (Xi , . . . ,Xyn) and Y :=
(yi,...,^), we let M(X;V) denote the ring of all power series F e
RpC,y] that converge on an open neighborhood of [-I,!]771 x [-e,e}d,
for some e > 0 that depends on F. For d = 0, we just write M(X).
From now on, we assume that we have chosen such an e for each F €
M(Xi, . . . ,X^;yi, . . . ,yd). Given {x,y) € R^ we let F(x,y) be the
value given by the power series if {x,y) e [-I,!]771 x [-£,e}d, and put
F ( x ^ y ) := 0 otherwise. The resulting function F is finitely subanalytic,
hence definable.
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Notation. — Given a property P(t) of positive real numbers t, we
say that P(t) holds at O-^- if there exists e > 0 such that P(t) holds for
all t € (0,£). When the property P(x,t) also depends on a parameter x
ranging over a set A C R^, then we allow e = e{x) > 0 also to depend on
this parameter,.

Let / : A x R -^ R be definable, A C RP. We wish to expand f(x, t) at
O'1" in a power series in t with exponents from K, uniformly in the parameter
x 6 A.

DEFINITION. — The function f has a uniform expansion on A if
there exist

(1) F e M(Xi, . . . ,Xyn;yi, . . . ,yd) for some m, d € N,

(2) ro, n, . . . , Td C K with n , . . . , Td > 0,

(3) definable analytic maps a : A —^ (0,oo), b = (&i , . . . , 6m) ^
A -> [-1,1]771 and c : A -^ [1, oo), such that for each x e A,
F(b(x),0) ̂  0 and f{x,t) = a^t^F^x), (c(x)tY\..., (c^)^) at O^
(Tn particular, f(x,t) ̂ 0 at 0^~.)

Remarks.

(1) Suppose that / has a uniform expansion on A. Then there is
a sequence (fn : A -^ R)n>o of definable analytic functions and an
unbounded strictly increasing sequence {dn}n>Q of real numbers such
that for all x € A, fo{x) ^ 0 and there exists e(x} > 0 such that
f(x,t) = ^ fri^x^"- for t € (0,£:(a:)), where the convergence is absolute

n>o
and uniform on each subinterval (0,5] C (0,e{x)). Consequently, f(x,-) is
analytic on (0,^)); (see §4 of [M2]).

(2) For the case K = Q, if / has a uniform expansion on A, then there
exist a rational number g, a positive integer A;, a power series F G M(X; Yi),
and finitely subanalytic, analytic maps a : A —> (0,oo), c : A —> [l,oo)
and b = (61,..., bm) '' A —> [—1,1]771 such that for each x G A we have
F(b{x),0) ^ 0 and /(a:,t) = a(x)tqF(b(x),{c(x)t)l/k) at O-^. Thus, there
exists a sequence (fn '. A —> R)n>o of finitely subanalytic, analytic functions
such that for all a: C A, fo(x) ^ 0 and there exists e(x) > 0 such that
f(x,t) === ̂  E /n^)^ for t C (0,^)).

n>0

DEFINITION. — Let f : A x R -^ R be definable, A C RP. For
definable B C A, f has a uniform expansion on B if f \ B x R has a
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uniform expansion on B; f has a piecewise uniform expansion on A if A
is a union of definable sets Ai , . . . An such that for i = 1,..., £, either f
has a uniform expansion on A^, or f(x,t) vanishes identically at O"1" for all
x € Ai.

(Note that we can take Ai , . . . , At to be disjoint.)

We can now state the main result of this section:

EXPANSION THEOREM. — Let f : A x R —^ R be definable, ACRP.
Then f has a piecewise uniform expansion on A.

We have some work to do before we begin the proof.

Given a tuple of variables X := (Xi,. . . , Xm) and v € W, we let X"
denote the monomial X^ ' ' - X^-. We note here a fact from analysis that
we will need:

(*) Let F € M(X), X := (Xi,...,X^), and let Y := (Y^...,Ym) be a
tuple of new variables. Then there exists e > 0 such that the power series

Wn-E^^^61^
converges on a neighborhood of {-I,!}171 x [-e.e}^ (i.e., G C M{X;Y)),
and such that for all (u, v) e [-1,1]771 x [-e, e}171, with \u + v\ <, 1, we have
F(u+v) =G{u,v).

We are thus justified in denoting the power series G by F(X + Y).

N.B. — The following reductions will be used throughout this
section, often without mention.

(1) Let / : A x R -^ R be definable with A C RP. Then the set

{x e A : f(x,t) =0 at O-^}

is definable. Thus, in order to show that / has a piecewise uniform
expansion on A, we may remove this set from A and assume (by 1.1)
that f(x^t) -^ 0 at O4"; i.e., for all x € A there exists e{x) > 0 such that
f(x,t) ̂  0 for all te (0,e(x)).

(2) Suppose ro, ri , . . . ,7-d, F and a,6,c are as in the definition of
"uniform expansion on A", except that instead of requiring a, b and c to be
definable and analytic, we only assume that they are definable. It follows
then from 3.1(1) that / has a piecewise uniform expansion on A. (We do
not actually need this observation, but it will relieve us in the coming pages
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of doing the easy, but quite frequently occurring, verifications that certain
definable functions are analytic.)

LEMMA. — Let r i , . . . , rd C K D (0, oo), d > 1. Let 0 = OQ < ai <
02 < • • • be the elements of the monoid riN + ... + r^N in increasing
order. Then given N e N, there exist s^..., Se e K H (0, oo) such that
{On - ON : 7Z > N} C 5iN + . . . + 5eN.

(See [M2], e.g., for a proof.)

MAIN LEMMA. — Let n,.. . ,rd e ^n(o,oo), F e M(Xi,.. .,x^;
yi , . . . ,Vd) , and Jet b = (&i,. . . ,^) : A -. [-l,l]m and c i , . . . ,Cd :
A -^ [l,oo) be definable maps, A C RP. Then the definable function
f : A x R — ^ R given by

f(x^t) :=F(b(x)^c,{x)t)r\..^(c^x)t)rd)
has a piecewise uniform expansion on A.

Proof. — First, we do the case that ci = ... = Cd.

Note that / has a piecewise uniform expansion on the definable set

{a;€A:F(^),0)^0},

so we may reduce to the case that F(b(x), 0) = 0 and f{x, t) ̂  0 at 0+ for
each x e A. Write

F^.y)^^^)^, F,(X)€M(X),
where the sum is taken over v e N^. Let 0 = OQ < 0:1 < 02 < • • • be the
elements of the monoid 7-iN + ... + r^N in increasing order. For all n e N
put

G,(X):=^F,(X)eM(X),

where the (finite) sum is taken over all v e N^ such that r^ + • • . +r^ =
On. Then for each re € A, we have

F{b(x), (c(x)tY\..., (0(^)1)^) = ̂  Gn(^))(c(a:)t)an at 0+.
n>0

Note that Go(b(x)) = F(b{x), 0) = 0 for all x C A, and that a; p-> G^(6(^)) :
A -^ R is definable for all n e N. Since / is definable, and we assume that
f(x,t) ̂  0 at O-^-, there exists by 1.4 some N e N such that for all x e A,
there is an n < N with Gn(b(x)) ̂  0. Now for each N > 0, the set

{x e A : Go{b(x)) =. . . = G^-i(^)) = 0, G^(a;)) ^ 0}
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is definable. Partitioning A suitably, we may thus reduce to the case that
there exists N > 0 such that for all a: € A, we have GQ{b(x)) = ... =
GN-i(b(x)) = 0 and Gjv(&(^)) 7^ 0. Then for each x C A we have

f(x^t) = (^^(GN^X))^ ̂  G,^))^)!)071-^) at O^
n>N

Let s = (^ i , . . . , Se) G N6 be as in the previous lemma. For each n > AT",
choose fi{n) G N6 such that si^(n)i + • • • + Se^(n)e = o-n — ^N- Put

^(X,Z) := G^(X) + ̂  G,(X)Z^) e M(X;Z),
n>N

where Z := (Zi, . . . , Ze) is a tuple of new variables. Put a(x} := c^x)0'1^
for all a; € A. Note that H(b{x),0) = GN(b{x)) ^ 0 and a{x} > 0 for all
x € A. Then for each re € A we have

f(x,t) = a^^^ff^), (c^t)51,..., WtY6) at 0+,

as desired.

Next, let c i , . . . ,Cd : A —> [l,oo) be definable functions. For each
i = 1,... ,d, the set

AZ := {x e A: Ci(x) ̂  Cj{x) for j = 1, . . . , d}

is definable; thus, we may reduce to the case that, say, A = Ai. Define
b^j : A ̂  [-1,1] for j = 1,... ,d by bm+j(x) := (cj(x)/c^x))^. Put

G^X.X^-i-i, ., . . ̂ Xm-^-d^Y) ' '= F{X^Xm-\-lY\-s ' ' ' iXm-}-dYd)-

Then G € M(X, X^+i,..., X^+^; Y) and

F(&(rc), (ci(^)7'1,..., (cdCr)^)^^), (01(0;)^)^,..., (c^t)^) at 0+

for each a; € A, where b' := ( & i , . . . ,&rn+d)- By the previous case, we are
done. D

Proof of the Expansion Theorem.

To show that a definable function / : A x R —^ R with A C RP has
a piecewise uniform expansion on A, we may (by 3.2) reduce to the case
that / is the restriction to A x R of an R^-function on M^1. We now
proceed by "induction on complexity of R^-functions" to show that each
R^-function / on R^"^1 has a piecewise uniform expansion on the definable
set A C R^. As usual, we will assume that /(re, t) -^ 0 at O"^ for each x € A.
Throughout the proof, the parameter x will range over A.
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Case. / is a projection function R^1 —>• R.

(Trivial.)

Case. / = —p, where g is an R^-function having a piecewise uniform
expansion on A.

(Easy; details omitted.)

Case. / = g + /i, where ^ and /i are R^-functions having piecewise
uniform expansions on A.

Now / has a piecewise uniform expansion on the set

[x € A : ̂ (rc, t) = 0 at 0-4 U {a: € A : /i(^, ̂ ) = 0 at 0+},

so we may reduce to the case that g and h have uniform expansions on A;
say that

g(x, t) = a^t^G^x), (c{x)tY1,..., (c^)^)^) at 0+

and
/i(^) = a^x^H^b^x), (c\x)t)81,..., (c7^)^)86) at 0-^

of the required form. We may assume that a = a!. (To see this, note that
the sets Ai := {x G A : a{x) <: a\x)} and As := {x e A : a(a;) > a'(x)}
are definable, so we may assume that either A = Ai or A = Aa. If A = Ai,
then

g{x,t) = a'(a;)r°G'(^), (a{x) /a''(x)), (c^t)7'1,..., (c^)^) at 0+,

where G'p^X^+^y) := Xyn4-iG(X,y). We use the same trick in case
A = A2.) Put V := (6,y) : A -^ [-l,!]77^, for appropriate m and n.
Suppose without loss of generality that SQ <ro.

Subcase. SQ = ro.

Introducing new variables as needed, put

F(X, V) := G(Xi,. . . . X^ Y,,.... Yd)

-\-H(Xm-{-li - ' • 5^m+n5"^d+l5 • • • 5^d+e)-

Then at O4" we have

/(.r,^) = a^)^0^^^), (c^)7'1,..., {c{x)tY^ (c'^)81,..., (c'^)^6).

Apply the Main Lemma.
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Subcase. SQ < 7*0.

Put d ' { x ) := 1 for x G A, and put F(X,V) equal to

^+e+lG'(Xi, . . . .X^YI, . . . ,Vd) + H(Xrn-^-l, - ' ' , ^m+n? ^d+1? • • • ?^d+e)-

Then at O"1", f(x^t) is equal to

a^F^), (c(xW\..., (c^)^, (c'(^)51,..., (c'W6,

(c'/(a;)t)ro-so).

Apply the Main Lemma.

Case. / = gh, where g and h are R^-functions having piecewise
uniform expansions on A.

This case is similar to, but easier than, the previous case, and we omit
the details.

Case. / == /Is, where s C K^ and h is an R^-function having a
piecewise uniform expansion on A. (Recall that we put h(x^t)8 := 0 for
h(x,t) < 0; see §3.)

For 5=0 , the result is trivial, so suppose that 5^0. Since /(a", t) ̂  0
at O4', we have h(x,t) > 0 at O"^. We may assume that h has a uniform
expansion on A; say that

h(x,t) = a(:r)f°ff(&(a;), (c(x)tY\..., (c^)!)^) at 0+

of the required form. Then

f(x^t) = a^)5^0^^), (c^t)7'1,..., Wt)^))8 at O^

Thus, it suffices to show that the definable function u : A x R —> R given
by

u{x, t) := {H(b(x)^ (c(x)tY1,..., Wt)^))8

has a piecewise uniform expansion on A.

Write

H(X, Y) = ̂  ̂ (X)^, ̂ ,(X) € M(X),

where the sum is taken over all v € N^. Note that Ho(b(x)) == H(b(x}^ 0) >
0, and that the sets Ai := {x e A : HQ(b(x}) >_ 1} and As := {x G A :
HQ{b(x)) < 1} are definable. So we may assume that either A = Ai or
A=A2 .
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Subcase. Ho{b(x)) > 1 for all x.

At 04' we have

H(b(x)^c{x)t)rl^..^c{x)tY^
= H,{b(x)){l + ̂ '(b'(.r), (c^)^,..., (c^)^)),

where V := ( & i , . . . , b^ 1/(W))) and

^(x,x^+i,y) ̂ x^i^^^y^.
i^o

Then

^(.r^) = ̂ o(^))5F(&/(rr), (c^)^,..., (c^)^)^) at 0+,

where

F(x,x^+i,y) := ̂  [^(^(^x^+i^))^ e M(x,x^+i;y).
k>0 v /

Subcase. 0 < I?o(&(^)) < 1 for all x.

For z = l , . . . ,d ,putCz(a 1) := c^x^H^x)))-1^1. Note that ^(.r) > 1
and {c^t)^ = (cWtY^l/HoWx))). Then at O4- we have

u^t)=Ho(b{x)YF(b{x)^ (c{x)tY\..., (c^)^)^ (ci^)^)^ . . . , (c^)^),

where
F(X, Vi,..., Y^) := V f5) (^* (X, Vi,..., ysd))^

fc>0 ^^

and

^*(x,Yi,... ,V2d) := ̂  ̂ wy^iy^1-1^-2. • .y^
î o

+ ̂  ̂ (x)y^^2"1^3 • • • ̂ d+
1/1=0
^2^0

...+ ^ ^(X)^^"-1.
"l=---=^d-l=0

^d^0

(Note that F, i^* € M(X; Vi , . . . , V2d) and iif* (X, 0) = 0.)

Apply the Main Lemma.

(We alert the reader here that we will use again in the next case the
construction of the series ft*.)
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Case. / = g(h-i,... ,/^), where g is a restricted analytic function
and / i i , . . . , hi are R^-functions each having piecewise uniform expansions
on A.

For each i = 1, . . . ,^, the set Ai := {x C A : hi(x,t) = 0 at 0+} is
definable, so we may assume by the monotonicity theorem that hi(x, t) ̂  0
at 0+ for i = 1,... ,^, and that each hi has a uniform expansion on A.
Since /(a^) 7^ 0 at 0+, by the definition of "restricted analytic function"
we must have \hi{x^ t)\ < 1 at 0+ for i = 1,..., £.

For simplicity, we do the case i = 1; the case £ > 1 is similar, but
notationally cumbersome. Put h := h\. Then

h{x,t) = a^i^H^x), (c(x)tY1,..., (cCr)^) at 0+

of the required form. Note that we must have ro > 0, since \h{x^t)\ < 1
at O4". The sets Ai :== {x e A : a(x) <, 1} and A2 := {x € A : a(x) > 1}
are definable, so we may as well assume that either A == Ai or A = Aa.
We must also consider separately the cases ro = 0 and 7-0 > 0. Thus, there
are four subcases to treat. We will show that in each subcase, h can be
represented at O4' in the form

h(x^t) = B\x) + H\B{x)^ (Ci(^)^,..., (G^)^6),

where the maps B : A —> [-I,!]71 for some n e N, B' : A —^ [-1,1],
and Ci , . . . , Ce : A --̂  [1, oo) are definable, s i , . . . , Se € K n (0, oo), and
H'\X,Y) e M(X',Y) for X = (Xi, . . . ,X^) and Y = (Y^...,Ye), with
H\X, 0) == 0. It follows then from Fact (*) that

f(x^t) = F{B{x), B\x), (C,(x)tY\..., (CoW-) at 0+,

where G is the Taylor series at 0 of g and

F := G(^'(x,y) +x,+i) e M(x,x,+i;y).
The Main Lemma then applies, finishing each subcase, and thus finishing
the proof as well.

Subcase, ro > 0 and a(x) < 1 for all x.

Put B := (b,a) : A -^ [-l.l]7^1, c' := 1 : A -> R, and
B' := 0 : A -^ R. Then

/i(^,^) = B\x) + ̂ '(B^), (c(^)7'1,..., {c(x)tY^ {c'{x)tY°) at 0+,

where

JT(X, x^+i, y, Yd+i) := x^i^+i^(x, r) e M(X, x^+i; y, ̂ +1).
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Subcase. TQ > 0 and a(x) > 1 for all x.

Put B' :== 0 : A -^ R and ^(rr) := a^)1/7'0; note that c^) > 1 and
(c'(x)tY0 = a(.r)^°. Then

h(x^t) = ^(re) + H\b{xY {c(x)tY\..., (c^t)^, (c^D at 0+,

where
H^x^Yd^i) := Yd^iH(x^Y) e M(x;y,yd+i).

Subcase, ro = 0 and a (re) > 1 for all re.

Write

H(X,Y) =^H,(X)Y^H^X) e M(X),

where the sum is taken over v € N^. Note that we must have
\a{x)Ho(b(x))\ < 1 for x € A. Put B'(a;) := a(a;)Jfo(^(^)) and put Ci(x) :=
a^xY/^c^x) for i = 1,... ,rf; then c,(a;) > 1 and (^(a;)^1 = a(x)(c(x)t)r^.
Let ^/ := Jf*, where Jf* is constructed from ft as in the previous case.
Hence, at 0"^ we have

h^t)=B\x) + H'(b{x), {c(x)tY\..., {c{x)t)^ (c^x)tY\..., (^(^t)^).

Subcase, ro = 0 and a(a:) ^ 1 for all re.

With HQ as in the previous subcase, let B' also be as in the previous
subcase and put

^:=x^i(^(x,y)-^o(x))
and B^M^^i-i.ir-^1.

D

5. Proof of the Main Theorem.

Let / : A —^ R be definable, A C M77^71. Replacing A by

{( :e ,2 / )GA:2 /€ in t (A^)} ,

and / by its restriction to this definable set, we may assume that A^ C R"
is open for all x € R771. We must show that there exists N > 0 such that
for all (a?, y) 6 A, if /(a;, -) is (7^ at ^/, then f(x^ -) is analytic at y .
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Consider the definable function jF^AxR7^]]^—^ given by

F f x y z t } ' - ! ^ ^ ^ i f ^ + ^ € A -
' ^ ^ ^ ^ " t o , otherwise.

For notational convenience, let the variable v range over J^77^71-^.

CLAIM. — There exists N > 0 such that for all v e A x W1, ifF(v, -)
is (7^ at 0, then F(z;, -) is analytic at 0.

Proof of Claim. — First, suppose that -D C A x R71 is definable, and
that F has a uniform expansion on P. Arguing as in the proof of the Main
Lemma, we write

F(v,t) = a^0 ̂ GnWv))^)^ at 0+,
n>0

with v ranging over D. Note that if there exist v € D and a positive integer
p > TQ such that F(v, -) is C^ at 0, then ro € N, (since a(v)F(b(v), 0) 7^ O).
So we may as well assume that VQ e N. Put

G(X, Vi) := ̂  GnWY^ e M(X; Vi),

where the sum is taken over all n € N with On € N. Then the function
g : D x R —^ R given by g(v,t) := a(2;)r°G(6(^),c(z^) is definable.
Furthermore, there exists an e > 0 (depending only on -F) such that g
is analytic on the set

{(v,t)eDxR:\t\<e/c(v)}',

in particular, g{v^-) is analytic at 0 for all v e D. Note also that for each
A; € N, the function

^^w-.n^
is analytic. Put h := F \ {D x R) — g. Then h is definable, and we have

h(v,t) =^a{v)Gn(b(v))c{v)ointoin^ro at 0+,

where the sum is taken over all n G N with On ^ N. Thus,
00

h{v,t)=Y^hk{v)t/3k at0+,
fc==0

where (/3fc) is a strictly increasing sequence of nonintegral real numbers
(since ro € N) and each hk : D —>• R is definable. By 1.5, there is an N C N
such that for all v G D, if h(v, t) = O(^) as t -^ O4-, then h(v, t) = 0 at 0+.
Thus, there exists N >0 such that for all v e D, if F(v,-) is C1^ at 0, then
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F(v,~) = g{v,-) on some interval (depending on v) about 0; thus, F(v,-)
is analytic at 0. (Note: For each k C N the function

^"^(O),^.

is definable and analytic, where B := {v C D : F(v^-) is C^ at 0}.)

Next, suppose that D C A x R71 is definable and that F{v,t) == 0
at O4' for each v ^ D. Note that for any positive integer p and 'y e -D, if
F(-y, -) is C^ at 0, then F(z», -) is p-flat at 0. By 1.5, there exists N > 0 such
that for all v € D, if F(v,-) is CN at 0, then F{v,-) vanishes identically
on some interval about 0, hence is analytic at 0. {Note: For each k e N the
function

.»^M(0)^K

is identically zero, where B := {v G D : F(v,-) is (7^ at 0}.)

The claim now follows easily from the Expansion Theorem applied
to F.

Proof of Main Theorem from Claim. — Let N > 0 be as in the
claim. Put

A7 := {(x,y) € A : F(x,y,z,-) is C^ at 0 e R for all z € R71}.
Note that if (a;,2/) € A — A 7 , then f{x,-) is not C1^ at ^/, hence not analytic
at y . So, we may replace A by its definable subset A7 and assume that for
all v e A x R71, the function F{v,-) is C^ at 0 e R, and hence analytic
at 0 by the claim. The arguments in the proof of the claim then establish
that there exist definable sets Bi, . . . , Bi with A x W1 = B^ U • • • U Bn such
that

^^(O);^,

is analytic for all k € N and i € {1 , . . . , £}. Increasing (if necessary) N as in
the claim and applying 2.5 and 3.1(1), we may assert that for all (a;, y) € A,
if f{x,-) is C^ at y , then f(x,-} is G°° at y .

Now let {x^y) € A and suppose that f{x,~) is (7^ on some open
euclidean ball U centered at y of radius e > 0. Then f(x,-) is G°° at
y. Furthermore, F ( x ^ y ' ^ z ^ - ) is (7^, and thus analytic, at t = 0 for all
(y1, z) € U x W1. Thus, ^ i-̂  /(rr, ?/ + tz) is defined and analytic on (-£, e)
for all ^ € M71 with ||;z:|| < 1. Hence, by 2.2, f(x,~) is analytic at y. D

Note. — The result clearly holds for definable maps F : A —> W^
A C M77^71.
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COROLLARY. — With assumptions as in the Main Theorem, the
set

{(re, y ) e A : /(a;, -) is analytic at y}

is definable.

Proof. — The set {(x,y) e A: f(x,~) is CM at y} is definable for
any fixed positive integer M. D

DEFINITION. — Let X C W. Then x € X is a smooth point of X
of dimension k ifXC\U is an analytic submanifold ofM^ of dimension k for
some open neighborhood U of x. The singular set of X , denoted Sing(-X),
is the complement in X of the smooth points of highest dimension.

COROLLARY. — Let X CRP be definable. Then for each k € N,
the set of smooth points of X of dimension k is definable; in particular,
Sing(X) is a closed definable subset of X.

Proof. — Let k e {0 , . . . ,p}. Given e > 0 and x G W, put
B(x,e) :={y^W : \x-y\ <e}.

Note that a; C X is a smooth point of dimension k if and only if for some
e > 0 and some i = ( ^ i , . . . , ik) with 1 < i\ < ' ' - < ik < p, the coordinate
projection TT^ (as in 1.2) maps X D B(x,e) bijectively onto an open subset
C of R^, and the inverse of TT^ \ A D B(x, e) (as a map C —> R^) is analytic
at 7Ti(x). Now use the previous corollary. D

COROLLARY. — Let A C R77^71 be definable. Then {{x, y) e R^":
y 6 Sing(Aa;)} is definable.

The proof is similar to that of the preceding corollary.

Note. — Suppose that S is a structure on (M, +, •) such that all sets
in <S are definable in M^. Then the above corollaries (suitably rephrased)
hold with the notion of definable in R^ replaced by the notion of belonging
to S.

In closing, we point out that the results of this section never hold in
o-minimal structures S on (R, +, •) which are not polynomially bounded.
By 1.3, the exponential function belongs to every such <S, and thus

, {e-^l\ t>011-^ s
I 0, t < 0
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belongs to 5, which is C°° on R but not analytic at t = 0. Also, the function
F : R2 -^ R given by

FCr, z/) := { {y{l/x ' exp (-1/^2 + ^2)) ' if ^ > ° and V + °
10, otherwise

belongs to S. Note that F{x,-) is C°° at 2/ = 0 iff x e (-00,0] U {l/(2n) :
n > 1}, which has infinitely many connected components; also, F is C^ at
(0,0) for every n > 0, but not C°° at (0,0).
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