We give estimations for the degree of separatrices of algebraic foliations in .
Nous estimons le degré des séparatrices d’un feuilletage algébrique de en fonction du degré du feuilletage.
@article{AIF_1991__41_4_883_0, author = {Cerveau, Dominique and Neto, Alcides Lins}, title = {Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve}, journal = {Annales de l'Institut Fourier}, pages = {883--903}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {4}, year = {1991}, doi = {10.5802/aif.1278}, mrnumber = {93b:32050}, zbl = {0734.34007}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1278/} }
TY - JOUR AU - Cerveau, Dominique AU - Neto, Alcides Lins TI - Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve JO - Annales de l'Institut Fourier PY - 1991 SP - 883 EP - 903 VL - 41 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1278/ DO - 10.5802/aif.1278 LA - en ID - AIF_1991__41_4_883_0 ER -
%0 Journal Article %A Cerveau, Dominique %A Neto, Alcides Lins %T Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve %J Annales de l'Institut Fourier %D 1991 %P 883-903 %V 41 %N 4 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1278/ %R 10.5802/aif.1278 %G en %F AIF_1991__41_4_883_0
Cerveau, Dominique; Neto, Alcides Lins. Holomorphic foliations in ${\mathbb {C}}{\mathbb {P}}(2)$ having an invariant algebraic curve. Annales de l'Institut Fourier, Volume 41 (1991) no. 4, pp. 883-903. doi : 10.5802/aif.1278. http://www.numdam.org/articles/10.5802/aif.1278/
[1] Sur le premier problème de Cousin, C.R. Acad. Sc., 207 (1938), 558-560. | JFM | Zbl
,[2] Formes intégrables holomorphes singulières, Asterisque, 97 (1983). | Numdam | MR | Zbl
, ,[3] Equations de Pfaff algébriques, Lect. Notes in Math., 708 (1979). | MR | Zbl
,[4] Algebraic solutions of polynomial differential equations and foliations in dimension two, in Holomorphic dynamics, Lect. Notes in Math., 1345 (1988). | MR | Zbl
,[5] Sur l'intégration algébrique des équations diff. du 1er ordre, Rendiconti del circolo matematico di Palermo, t. 11, p. 193-239. | JFM
,[6] On a generalisation of the Rham Lemma, Ann. Inst. Fourier, 26-2 (1976), 165-170. | Numdam | MR | Zbl
,[7] Quasi homogene isolierte singularitäten von Hyperflächen, Invent. Math., 14 (1971), 123-142. | MR | Zbl
,[8] Topological invariants and equidesingularization for holomorphic vector fields, J. of Diff. Geometry, vol. 20, n° 1 (1984), 143-174. | MR | Zbl
, , ,Cited by Sources: