Equations of hyperelliptic modular curves
Annales de l'Institut Fourier, Tome 41 (1991) no. 4, pp. 779-795.

Nous calculons, avec une même méthode, les équations de toutes les courbes modulaires hyperelliptiques. L’outil principal est fourni par une classe de fonctions modulaires introduite par Newman en 1957. Notre méthode utilise l’action de l’involution hyperelliptique sur les pointes.

We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.

@article{AIF_1991__41_4_779_0,
     author = {Rovira, Josep Gonzalez},
     title = {Equations of hyperelliptic modular curves},
     journal = {Annales de l'Institut Fourier},
     pages = {779--795},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {4},
     year = {1991},
     doi = {10.5802/aif.1273},
     zbl = {0758.14010},
     mrnumber = {93g:11064},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1273/}
}
TY  - JOUR
AU  - Rovira, Josep Gonzalez
TI  - Equations of hyperelliptic modular curves
JO  - Annales de l'Institut Fourier
PY  - 1991
DA  - 1991///
SP  - 779
EP  - 795
VL  - 41
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1273/
UR  - https://zbmath.org/?q=an%3A0758.14010
UR  - https://www.ams.org/mathscinet-getitem?mr=93g:11064
UR  - https://doi.org/10.5802/aif.1273
DO  - 10.5802/aif.1273
LA  - en
ID  - AIF_1991__41_4_779_0
ER  - 
Rovira, Josep Gonzalez. Equations of hyperelliptic modular curves. Annales de l'Institut Fourier, Tome 41 (1991) no. 4, pp. 779-795. doi : 10.5802/aif.1273. http://www.numdam.org/articles/10.5802/aif.1273/

[ALe] A. O. Atkin, J. Lehner, Hecke Operators on Г0(m), Math. Ann., 185 (1970), 134-160. | MR 42 #3022 | Zbl 0177.34901

[B] B. J. Birch, Some calculations of modulars relations, in "Modular Functions of One Variable I", Springer Lecture Notes, 320, 175-186. | MR 48 #10984 | Zbl 0261.10019

[F] R. Fricke, "Die elliptischen Funktionen und ihre Anwendungen, II", Teubner (1922). | JFM 48.0432.01

[K] P. G. Kluit, On the Normalizer of Г0(N), in "Modular Functions of One Variable V". Springer Lecture Notes 601. | MR 58 #513 | Zbl 0355.10020

[LeN] J. Lehner, M. Newman, Weierstrass points of Г0(N), Ann. of Math., 79 (1964), 360-368. | MR 28 #5045 | Zbl 0124.29203

[Li] G. Ligozat, Courbes modulaires de genre 1, Bull. Soc. Math. France, Mémoire, 43 (1975). | Numdam | MR 54 #5121 | Zbl 0322.14011

[MS] B. Mazur, Swinnerton-Dyer, P : Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. | Zbl 0281.14016

[N1] M. Newman, Construction and application of a class of modular functions, Proceed. of London Math. Soc., (1957), 334-350. | MR 19,953c | Zbl 0097.28701

[N2] M. Newman, Construction and application of a class of modular functions (II), Proceed. of London Math. Soc., (1959), 373-387. | MR 21 #6354 | Zbl 0178.43001

[O1] A. P. Ogg, Hyperelliptic Modular Curves, Bull. Soc. Math. France, 102 (1974), 449-462. | EuDML 87238 | Numdam | MR 51 #514 | Zbl 0314.10018

[O2] A. P. Ogg, On the Weierstarss points of X0(N), Illinois J. of Math., Vol. 22 (1978), 31-35. | MR 57 #3136 | Zbl 0374.14005

[R] E. Reyssat, Quelques Aspects des Surfaces de Riemann, Birkhäusser, 1989. | MR 90k:30085 | Zbl 0689.30001

Cité par Sources :