This work is at the intersection of dynamical systems and contact geometry, and it focuses on the effects of a contact surgery adapted to the study of Reeb fields and on the effects of invariance of contact homology.
We show that this contact surgery produces an increased dynamical complexity for all Reeb flows compatible with the new contact structure. We study Reeb Anosov fields on closed 3-manifolds that are not topologically orbit-equivalent to any algebraic flow; this includes many examples on hyperbolic 3-manifolds. Our study also includes results of exponential growth in cases where neither the flow nor the manifold obtained by surgery is hyperbolic, as well as results when the original flow is periodic. This work fully demonstrates, in this context, the relevance of contact homology to the analysis of the dynamics of Reeb fields.
Notre étude, à l’intersection des systèmes dynamiques et la géométrie de contact, porte sur les effets de la construction d’une chirurgie de contact adaptée à l’étude des champs de Reeb et sur les effets de l’invariance de l’homologie de contact.
Nous montrons que cette chirurgie de contact produit une complexité dynamique accrue pour tous les flots de Reeb compatibles avec la nouvelle structure de contact. Nous étudions des champs de Reeb Anosov sur des 3-variétés fermées qui ne sont topologiquement orbite-équivalents à aucun flot algébrique, ce qui inclut de nombreux exemples sur des 3-variétés hyperboliques. Notre étude comprend également des résultats de croissance exponentielle dans des cas où, ni le flot obtenu par chirurgie, ni la variété construite ne sont hyperboliques ainsi que des résultats quand le flot d’origine est périodique. Ce travail démontre pleinement, dans ce cadre, la pertinence de l’homologie contact pour analyser la dynamique des champs de Reeb.
Revised:
Accepted:
Published online:
Mots-clés : Anosov flow, 3-manifold, contact structure, contact flow, Reeb flow, surgery, contact homology
@article{AHL_2021__4__1103_0, author = {Foulon, Patrick and Hasselblatt, Boris and Vaugon, Anne}, title = {Orbit growth of contact structures after surgery}, journal = {Annales Henri Lebesgue}, pages = {1103--1141}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.98}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.98/} }
TY - JOUR AU - Foulon, Patrick AU - Hasselblatt, Boris AU - Vaugon, Anne TI - Orbit growth of contact structures after surgery JO - Annales Henri Lebesgue PY - 2021 SP - 1103 EP - 1141 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.98/ DO - 10.5802/ahl.98 LA - en ID - AHL_2021__4__1103_0 ER -
Foulon, Patrick; Hasselblatt, Boris; Vaugon, Anne. Orbit growth of contact structures after surgery. Annales Henri Lebesgue, Volume 4 (2021), pp. 1103-1141. doi : 10.5802/ahl.98. http://www.numdam.org/articles/10.5802/ahl.98/
[ACH19] Topological entropy for Reeb vector fields in dimension three via open book decompositions, J. Éc. Polytech., Math., Volume 6 (2019), pp. 119-148 | DOI | Numdam | MR | Zbl
[Alv16a] Cylindrical contact homology and topological entropy, Geom. Topol., Volume 20 (2016) no. 6, pp. 3519-3569 | DOI | MR | Zbl
[Alv16b] Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds, J. Mod. Dyn., Volume 10 (2016), pp. 497-509 | DOI | MR | Zbl
[Alv17] Legendrian contact homology and topological entropy (2017) (https://arxiv.org/abs/1410.3381) | Zbl
[Bar95] Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 2, pp. 247-270 | DOI | MR | Zbl
[Bar06] De l’hyperbolique au globalement hyperbolique, 2006 (Habilitation à diriger des recherches, Université Claude Bernard de Lyon, https://tel.archives-ouvertes.fr/tel-00011278/document)
[Bar12] A new Laplace operator in Finsler geometry and periodic orbits of Anosov flows (2012) (https://arxiv.org/abs/1204.0879)
[BC05] Homologie de contact des variétés toroïdales, Geom. Topol., Volume 9 (2005), pp. 299-313 | DOI | Zbl
[BEE12] Effect of Legendrian Surgery, Geom. Topol., Volume 16 (2012) no. 1, pp. 301-389 | DOI | MR | Zbl
[Ben83] Entrelacement et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) (Astérisque), Volume 107, Société Mathématique de France, 1983, pp. 87-161 | Numdam | MR | Zbl
[BF14] Knot theory of -covered Anosov flows: homotopy versus isotopy of closed orbits, J. Topol., Volume 7 (2014) no. 3, pp. 677-696 | DOI | MR | Zbl
[BF17] Counting periodic orbits of Anosov flows in free homotopy classes, Comment. Math. Helv., Volume 92 (2017) no. 4, pp. 641-714 | DOI | MR | Zbl
[BM19] stability of boundary actions and inequivalent Anosov flows (2019) (https://arxiv.org/abs/1909.02324v1)
[BO09] Symplectic Homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J., Volume 146 (2009) no. 1, pp. 71-174 | MR | Zbl
[Bou02] A Morse–Bott approach to Contact Homology, Ph. D. Thesis, Stanford University, USA (2002) | MR
[BP07] Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007 | Zbl
[CDR20] On the existence of supporting broken book decompositions for contact forms in dimension 3 (2020) (https://arxiv.org/abs/2001.01448)
[CGH09] Finitude homotopique et isotopique des structures de contact tendues, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 245-293 | DOI | Numdam | MR | Zbl
[CH96] Nonuniformly hyperbolic K-systems are Bernoulli, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 19-44 | DOI | MR | Zbl
[CH13] Reeb vector fields and open book decompositions, J. Eur. Math. Soc., Volume 15 (2013) no. 2, pp. 443-507 | DOI | MR | Zbl
[CP20] Three manifolds that admit infinitely many Anosov flows (2020) (https://arxiv.org/abs/2006.09101v1)
[DG01] Fillability of tight contact structures, Algebr. Geom. Topol., Volume 1 (2001), pp. 153-172 | DOI | Zbl
[Dra04] Fredholm theory and transversality for noncompact pseudoholomorphic curves in symplectisations, Commun. Pure Appl. Math., Volume 57 (2004) no. 6, pp. 726-763 | DOI | MR | Zbl
[EG99] Tight contact structures via dynamics, Proc. Am. Math. Soc., Volume 127 (1999) no. 12, pp. 3697-3706 | DOI | MR | Zbl
[EG02] Tight contact structures and Anosov flows, Topology Appl., Volume 124 (2002) no. 2, pp. 211-219 | DOI | MR | Zbl
[EGH00] Introduction to symplectic field theory, GAFA 2000. Visions in mathematics–Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25-September 3, 1999. Part II, Birkhäuser, 2000, pp. 560-673 | Zbl
[Eli89] Classification of overtwisted contact structures on -manifolds, Invent. Math., Volume 98 (1989) no. 3, pp. 623-637 | DOI | MR | Zbl
[Eli90] Topological characterization of Stein manifolds of dimension , Int. J. Math., Volume 1 (1990) no. 1, pp. 29-46 | DOI | MR | Zbl
[Fan09] Thermodynamic invariants of Anosov flows and rigidity, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 4, pp. 1185-1204 | DOI | MR | Zbl
[Fen94] Anosov flows in -manifolds, Ann. Math., Volume 139 (1994) no. 1, pp. 79-115 | DOI | MR | Zbl
[FH03] Zygmund Strong Foliations, Isr. J. Math., Volume 138 (2003), pp. 157-188 | DOI | MR | Zbl
[FH13] Contact Anosov Flows on Hyperbolic 3–Manifolds, Geom. Topol., Volume 17 (2013) no. 2, pp. 1225-1252 | DOI | MR | Zbl
[FH19] Hyperbolic flows, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2019 | Zbl
[Fou01] Entropy rigidity of Anosov flows in dimension three, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 4, pp. 1101-1112 | MR | Zbl
[Gei08] An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008 | MR | Zbl
[Gir91] Convexité en topologie de contact, Comment. Math. Helv., Volume 66 (1991) no. 4, pp. 637-677 | DOI | MR | Zbl
[Hof93] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., Volume 114 (1993) no. 3, pp. 515-563 | DOI | MR | Zbl
[Hoz20] Symplectic Geometry of Anosov Flows in Dimension 3 and Bi-Contact Topology (2020) (https://arxiv.org/abs/2009.02768)
[HT80] Anosov flows on new three manifolds, Invent. Math., Volume 59 (1980) no. 2, pp. 95-103 | DOI | MR | Zbl
[Kat82] Entropy and closed geodesics, Ergodic Theory Dyn. Syst., Volume 2 (1982) no. 3–4, pp. 339-365 | DOI | MR | Zbl
[Kat88] Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dyn. Syst., Volume 8 (1988), pp. 139-152 (Charles Conley Mem. Vol.) | MR | Zbl
[KB94] Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dyn. Syst., Volume 14 (1994) no. 4, pp. 757-785 | DOI | MR | Zbl
[KH95] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 | MR | Zbl
[Lib59] Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géométrie Différentielle Globale (Bruxelles, 1958), Centre Belge Rech. Math., Louvain (1959), p. 37--59 | Zbl
[Liv04] On contact Anosov flows, Ann. Math., Volume 159 (2004) no. 3, pp. 1275-1312 | DOI | MR | Zbl
[Mat13] The space of (contact) Anosov flows on 3-manifolds, J. Math. Sci., Tokyo, Volume 20 (2013) no. 3, pp. 445-460 | MR | Zbl
[McL12] The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 369-442 | DOI | MR | Zbl
[Mit95] Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier, Volume 45 (1995) no. 5, pp. 1407-1421 | DOI | Numdam | MR | Zbl
[ML98] Tight contact structures on solid tori, Trans. Am. Math. Soc., Volume 350 (1998) no. 3, pp. 1013-1044 | DOI | MR | Zbl
[MP12] Equivariant symplectic homology of Anosov contact structures, Bull. Braz. Math. Soc., Volume 43 (2012) no. 4, pp. 513-527 | DOI | MR | Zbl
[MS11] Positive topological entropy of Reeb flows on spherizations, Math. Proc. Camb. Philos. Soc., Volume 151 (2011) no. 1, pp. 103-128 | DOI | MR | Zbl
[Orn74] Ergodic theory, randomness and dynamical systems, Yale Mathematical Monographs, 5, Yale University Press, New Haven, 1974 | MR | Zbl
[OW98] On the Bernoulli nature of systems with some hyperbolic structure, Bernoulli, Volume 18 (1998) no. 2, pp. 441-456 | MR | Zbl
[Par19] Contact homology and virtual fundamental cycles, J. Am. Math. Soc., Volume 32 (2019) no. 3, pp. 825-919 | DOI | MR | Zbl
[PP00] Negatively oriented ideal triangulations and a proof of Thurston’s hyperbolic Dehn filling theorem, Expo. Math., Volume 18 (2000) no. 1, pp. 1-35 | MR | Zbl
[PT72] Anosov flows and the fundamental group, Topology, Volume 11 (1972), pp. 147-150 | DOI | MR | Zbl
[Sha93] Closed orbits in homology classes for Anosov flows, Ergodic Theory Dyn. Syst., Volume 13 (1993) no. 2, pp. 387-408 | DOI | MR | Zbl
[Thu80] The geometry and topology of 3-manifolds, Mathematical Sciences Research Institute, 1980 (Lectures notes distributed by Princeton University, http://www.msri.org/publications/books/gt3m)
[Thu82] Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl
[Vau15] On growth rate and contact homology, Algebr. Geom. Topol., Volume 15 (2015) no. 2, pp. 623-666 | DOI | MR | Zbl
[Wei91] Contact surgeries and symplectic handlebodies, Hokkaido Math. J., Volume 20 (1991) no. 2, pp. 241-251 | Zbl
Cited by Sources: