We show that the algebraic automorphism group of the character variety of a closed orientable surface with negative Euler characteristic is a finite extension of its mapping class group. Along the way, we provide a simple characterization of the valuations on the character algebra coming from measured laminations.
Nous montrons que le groupe d’automorphismes de la variété des caractères d’une surface orientable close de caractéristique d’Euler strictement négative est une extension finie de son groupe modulaire. En cours de route, nous donnons une caractérisation simple des valuations de l’algèbre des fonctions sur la variété des caractères qui proviennent des laminations mesurées.
Revised:
Accepted:
Published online:
Mots-clés : mapping class group, character variety, measured lamination
@article{AHL_2021__4__591_0, author = {March\'e, Julien and Simon, Christopher-Lloyd}, title = {Automorphisms of character varieties}, journal = {Annales Henri Lebesgue}, pages = {591--603}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.82}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.82/} }
Marché, Julien; Simon, Christopher-Lloyd. Automorphisms of character varieties. Annales Henri Lebesgue, Volume 4 (2021), pp. 591-603. doi : 10.5802/ahl.82. http://www.numdam.org/articles/10.5802/ahl.82/
[AS16] Rigidity phenomena in the mapping class group, Handbook of Teichmüller theory. Vol. VI (IRMA Lectures in Mathematics and Theoretical Physics), Volume 27, European Mathematical Society, 2016, pp. 131-165 | MR | Zbl
[Che13] Représentations galoisiennes automorphes et conséquences arithmétiques des conjectures de Langlands et Arthur (2013) (Mémoire de HDR https://arxiv.org/abs/1307.5170)
[CM12] Multicurves and regular functions on the representation variety of a surface in , Comment. Math. Helv., Volume 87 (2012), pp. 409-431 | DOI | MR | Zbl
[FLP79] Comment Thurston compactifie l’espace de Teichmüller, Travaux de Thurston sur les surfaces. Seminaire Orsay (Astérisque), Société Mathématique de France, 1979 no. 66-67, pp. 139-150 | Numdam | Zbl
[FM12] A primer in mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012 | Zbl
[Iva97] Automorphisms of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices, Volume 14 (1997), pp. 651-666 | DOI | MR
[LM08] Ergodic theory of the space of measured laminations, Int. Math. Res. Not., Volume 2008 (2008) no. 4, rnm126 | MR | Zbl
[Luo00] Automorphisms of the complex of curves, Topology, Volume 39 (2000) no. 2, pp. 283-298 | MR | Zbl
[Mar16] Character varieties in SL and skein algebras, Topology, Geometry and Algebra of low dimensional manifolds, RIMS, Kyoto, Volume 1991, Kyoto University (2016), pp. 27-42
[Mas82] Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982) no. 1, pp. 169-200 | DOI | MR | Zbl
[MO93] Relative growth rates of closed geodesics on a surface under varying hyperbolic structures, Comment. Math. Helv., Volume 68 (1993) no. 2, pp. 171-208 | DOI | MR | Zbl
[Ota12] Compactification of spaces of representations, after Culler, Morgan and Shalen, Berkovich Spaces and Applications (Ducros, A.; Favre, C.; Nicaise, J., eds.) (Lecture Notes in Mathematics), Volume 2119 (2012), pp. 367-413 | Zbl
[P17] The invariant theory of matrices, University Lecture Series, 69, American Mathematical Society, 2017 | MR | Zbl
[Pap86a] Deux remarques sur la géométrie symplectique de l’espace des feuilletages mesurés sur une surface, Ann. Inst. Fourier, Volume 36 (1986) no. 2, pp. 127-141 | DOI | Numdam | Zbl
[Pap86b] Geometric intersection functions and hamiltonian vector fields on the space of measured laminations, Pac. J. Math., Volume 124 (1986) no. 2, pp. 375-402 | DOI | Zbl
[PS00] On skein algebras and -character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl
[PS19] Skein algebras of surfaces, Trans. Am. Math. Soc., Volume 371 (2019) no. 2, pp. 1309-1332 | DOI | MR | Zbl
[Sha02] Representations of 3-manifold groups, Handbook of geometric topology, North-Holland, 2002, pp. 955-1044 | Zbl
[Sko96] Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl
[Thu09] Geometric intersection of curves on surfaces (2009) (preprint, https://dpthurst.pages.iu.edu/DehnCoordinates.pdf)
[Vaq07] Extension d’une valuation, Trans. Am. Math. Soc., Volume 359 (2007) no. 7, pp. 3439-3481 | DOI | MR | Zbl
[ÈH74] Cubic surfaces of Markov type, Mat. Sb., N. Ser., Volume 93(135) (1974), p. 331-346, 487 | MR | Zbl
Cited by Sources: