This article gives the description of the nodes of stable curves which are limits of Weierstraß points. This gives the solution of the problem posed by Esteves of characterising the stable curves that do not have nodes which are limits of Weierstraß points. Moreover, we extend this result to -Weierstraß points for all . Finally we describe the -Weierstraß gap sequences that are realised by -Weierstraß points in genus . The proofs rely on the compactification of strata of differentials introduced by Bainbridge–Chen–Gendron–Grushevsky–Möller.
Cet article donne la description des nœuds des courbes stables qui sont limites de points de Weierstraß. Cela résout le problème posé par Esteves de caractériser les courbes stables dont aucun nœud n’est limite de points de Weierstraß. De plus, nous étendons ce résultat au cas des points de -Weierstraß pour tout . Enfin, nous donnons la description des lacunes de points de -Weierstraß réalisées sur des surfaces de Riemann de genre . Les preuves reposent sur la compactification des strates de différentielles introduites par Bainbridge–Chen–Gendron–Grushevsky–Möller.
Revised:
Accepted:
Published online:
Mots-clés : Weierstrass points, Riemann surfaces, stable curves, Weierstrass gap sequences
@article{AHL_2021__4__571_0, author = {Gendron, Quentin}, title = {Sur les n{\oe}uds de {Weierstra{\ss}}}, journal = {Annales Henri Lebesgue}, pages = {571--589}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.81}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/ahl.81/} }
Gendron, Quentin. Sur les nœuds de Weierstraß. Annales Henri Lebesgue, Volume 4 (2021), pp. 571-589. doi : 10.5802/ahl.81. http://www.numdam.org/articles/10.5802/ahl.81/
[BCG + 18] Compactification of strata of abelian differentials, Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | MR | Zbl
[BCG + 19] Strata of -differentials, Algebr. Geom., Volume 6 (2019) no. 2, pp. 196-233 | MR | Zbl
[CF91] On higher Weierstrass points, Duke Math. J., Volume 62 (1991) no. 1, pp. 179-203 | MR | Zbl
[Cor85] Systèmes pluricanoniques sur l’espace des modules des courbes et diviseurs de courbes -gonales (d’après Harris et Mumford), Séminaire Bourbaki 1983/84 (36 année), Société Mathématique de France, 1985 | Numdam | MR | Zbl
[Cuk89] Families of Weierstrass points, Duke Math. J., Volume 58 (1989) no. 2, pp. 317-346 | MR | Zbl
[DC08] Weierstrass points and their impact in the study of algebraic curves : a historical account from the “Lückensatz” to the 1970s, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 54 (2008) no. 1, pp. 37-59 | DOI | Zbl
[Dum82] Die 3-Weierstrass-Punkte über dem Teichmüller–Raum , Manuscr. Math., Volume 38 (1982), pp. 201-223 | DOI | Zbl
[EH87] Existence, decomposition, and limits of certain Weierstrass points, Invent. Math., Volume 87 (1987), pp. 495-515 | DOI | MR | Zbl
[Est98] Linear systems and ramification points on reducible nodal curves, Mat. Contemp., Volume 14 (1998), pp. 21-35 | MR | Zbl
[GT17] Différentielles à singularités prescrites (2017) (https://arxiv.org/abs/1705.03240)
[Hur93] Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., Volume 41 (1893), pp. 403-442 | DOI | MR | Zbl
[KE19] Weierstrass points of order three on smooth quartic curves, J. Algebra Appl., Volume 18 (2019) no. 1, p. 21 | MR | Zbl
[Lax89] Normal higher Weierstrass points, Tsukuba J. Math., Volume 13 (1989) no. 1, pp. 1-5 | MR | Zbl
[Rey89] Quelques aspects des surfaces de Riemann, Progress in Mathematics, 77, Birkhäuser, 1989 | MR | Zbl
Cited by Sources: