Markov partitions for toral 2 -rotations featuring Jeandel–Rao Wang shift and model sets
[Partitions de Markov pour 2 -rotations faisant intervenir le sous-décalage de Jeandel–Rao et les ensembles modèles]
Annales Henri Lebesgue, Tome 4 (2021), pp. 283-324.

Nous définissons une partition 𝒫 0 et une 2 -rotation ( 2 -action définie par des rotations)sur un tore 2-dimensionnel dont le système dynamique symbolique associé est un sous-décalage propre et minimal du sous-décalage apériodique de Jeandel–Rao décrit par un ensemble de 11 tuiles de Wang. Nous définissons une autre partition 𝒫 𝒰 et une 2 -rotation sur 𝕋 2 dont le système dynamique symbolique associé est égal au sous-décalage minimal et apériodique défini par un ensemble de 19 tuiles de Wang. On montre que 𝒫 𝒰 est une partition de Markov pour la 2 -rotation sur 𝕋 2 . Nous prouvons dans les deux cas que la 2 -rotation sur le tore est le facteur équicontinu maximal des sous-décalages minimaux et que l’ensemble des cardinalités des fibres du facteur est {1,2,8}. Les deux sous-décalages minimaux sont uniquement ergodiques et sont isomorphes en tant que systèmes dynamiques mesurés à la 2 -rotation sur le tore. Les résultats fournissent une construction de ces sous-décalages de Wang en tant qu’ensembles modèles par la méthode de coupe et projection 4 sur 2. Un puzzle à faire soi-même est disponible en annexe pour illustrer les résultats.

We define a partition 𝒫 0 and a 2 -rotation ( 2 -action defined by rotations) on a 2-dimensional torus whose associated symbolic dynamical system is a minimal proper subshift of the Jeandel–Rao aperiodic Wang shift defined by 11 Wang tiles. We define another partition 𝒫 𝒰 and a 2 -rotation on 𝕋 2 whose associated symbolic dynamical system is equal to a minimal and aperiodic Wang shift defined by 19 Wang tiles. This proves that 𝒫 𝒰 is a Markov partition for the 2 -rotation on 𝕋 2 . We prove in both cases that the toral 2 -rotation is the maximal equicontinuous factor of the minimal subshifts and that the set of fiber cardinalities of the factor map is {1,2,8}. The two minimal subshifts are uniquely ergodic and are isomorphic as measure-preserving dynamical systems to the toral 2 -rotations. It provides a construction of these Wang shifts as model sets of 4-to-2 cut and project schemes. A do-it-yourself puzzle is available in the appendix to illustrate the results.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.73
Classification : 37B50, 52C23, 28D05, 37B05
Mots clés : Wang tilings, aperiodic, rotation, Markov partition, cut and project
Labbé, Sébastien 1

1 Univ. Bordeaux, CNRS, Bordeaux INP LaBRI, UMR 5800 F-33400, Talence, (France)
@article{AHL_2021__4__283_0,
     author = {Labb\'e, S\'ebastien},
     title = {Markov partitions for toral $\protect \mathbb{Z}^2$-rotations featuring {Jeandel{\textendash}Rao} {Wang} shift and model sets},
     journal = {Annales Henri Lebesgue},
     pages = {283--324},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.73},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ahl.73/}
}
TY  - JOUR
AU  - Labbé, Sébastien
TI  - Markov partitions for toral $\protect \mathbb{Z}^2$-rotations featuring Jeandel–Rao Wang shift and model sets
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 283
EP  - 324
VL  - 4
PB  - ÉNS Rennes
UR  - http://www.numdam.org/articles/10.5802/ahl.73/
DO  - 10.5802/ahl.73
LA  - en
ID  - AHL_2021__4__283_0
ER  - 
%0 Journal Article
%A Labbé, Sébastien
%T Markov partitions for toral $\protect \mathbb{Z}^2$-rotations featuring Jeandel–Rao Wang shift and model sets
%J Annales Henri Lebesgue
%D 2021
%P 283-324
%V 4
%I ÉNS Rennes
%U http://www.numdam.org/articles/10.5802/ahl.73/
%R 10.5802/ahl.73
%G en
%F AHL_2021__4__283_0
Labbé, Sébastien. Markov partitions for toral $\protect \mathbb{Z}^2$-rotations featuring Jeandel–Rao Wang shift and model sets. Annales Henri Lebesgue, Tome 4 (2021), pp. 283-324. doi : 10.5802/ahl.73. http://www.numdam.org/articles/10.5802/ahl.73/

[ABKL15] Aujogue, Jean-Baptiste; Barge, Marcy; Kellendonk, Johannes; Lenz, Daniel Equicontinuous factors, proximality and Ellis semigroup for Delone sets, Mathematics of Aperiodic Order (Progress in Mathematics), Volume 309, Springer, 2015, pp. 137-194 | DOI | MR | Zbl

[Adl98] Adler, Roy Lee Symbolic dynamics and Markov partitions, Bull. Am. Math. Soc., Volume 35 (1998) no. 1, pp. 1-56 | DOI | MR | Zbl

[AFHI11] Arnoux, Pierre; Furukado, Maki; Harriss, Edmund; Ito, Shunji Algebraic numbers, free group automorphisms and substitutions on the plane, Trans. Am. Math. Soc., Volume 363 (2011) no. 9, pp. 4651-4699 | DOI | MR | Zbl

[AKY19] Alevy, Ian; Kenyon, Richard; Yi, Ren A family of minimal and renormalizable rectangle exchange maps, Ergodic Theory Dyn. Syst. (2019), pp. 1-28 | DOI

[Aus88] Auslander, Joseph Minimal flows and their extensions, North-Holland Mathematics Studies, 153, North-Holland, 1988 (Notas de Matemática [Mathematical Notes], 122) | MR | Zbl

[AW70] Adler, Roy L.; Weiss, Benjamin Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, 98, American Mathematical Society, 1970 | MR | Zbl

[Ber65] Berger, Robert The undecidability of the domino problem, Ph. D. Thesis, Harvard University, USA (1965) | MR

[Ber66] Berger, Robert The undecidability of the domino problem, Memoirs of the American Mathematical Society, 66, American Mathematical Society, 1966 | MR | Zbl

[Ber80] Berstel, Jean Mots de Fibonacci, 1980, pp. 57-78 (In Séminaire d’Informatique Théorique, L.I.T.P., Paris)

[BF13] Bédaride, Nicolas; Fernique, Thomas The Ammann–Beenker Tilings Revisited, Aperiodic Crystals (Schmid, Siegbert; Withers, Ray L.; Lifshitz, Ron, eds.), Springer (2013), pp. 59-65 | DOI

[BF20] Bédaride, Nicolas; Fernique, Thomas Canonical projection tilings defined by patterns, Geom. Dedicata, Volume 208 (2020), pp. 157-175 | DOI | MR | Zbl

[BG13] Baake, Michael; Grimm, Uwe Aperiodic Order. Vol.1. A mathematical invitation, Encyclopedia of Mathematics and Its Applications, 149, Cambridge University Press, 2013 (with a foreword by Roger Penrose) | DOI | Zbl

[BHP97] Baake, Michael; Hermisson, Joachim; Pleasants, Peter A. B. The torus parametrization of quasiperiodic LI-classes, J. Phys. A, Math. Gen., Volume 30 (1997) no. 9, pp. 3029-3056 | DOI | MR | Zbl

[BMP05] Baláži, Peter; Masáková, Zuzana; Pelantová, Edita Complete characterization of substitution invariant Sturmian sequences, Integers, Volume 5 (2005) no. 1, A14 | MR | Zbl

[Bru81] Bruijn, Nicolas G. de Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II, Indag. Math., Volume 43 (1981) no. 1, p. 39-52, 53–66 | DOI | MR | Zbl

[BST19] Berthé, Valérie; Steiner, Wolfgang; Thuswaldner, Jörg M. Geometry, dynamics, and arithmetic of S-adic shifts, Ann. Inst. Fourier, Volume 69 (2019) no. 3, pp. 1347-1409 | DOI | MR | Zbl

[BV00] Berthé, Valérie; Vuillon, Laurent Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math., Volume 223 (2000) no. 1-3, pp. 27-53 | DOI | MR | Zbl

[CH73] Coven, Ethan M.; Hedlund, Gustav A. Sequences with minimal block growth, Math. Syst. Theory, Volume 7 (1973), pp. 138-153 | DOI | MR | Zbl

[CN10] Cassaigne, Julien; Nicolas, François Factor complexity, Combinatorics, Automata and Number Theory (Encyclopedia of Mathematics and its Applications), Volume 135, Cambridge University Press, 2010, pp. 163-247 | DOI | MR | Zbl

[Cul96] Culik, Karel II An aperiodic set of 13 Wang tiles, Discrete Math., Volume 160 (1996) no. 1-3, pp. 245-251 | DOI | MR | Zbl

[DGS76] Denker, Manfred; Grillenberger, Christian; Sigmund, Karl Strictly ergodic embedding (Theorem of Jewett and Krieger), Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics), Springer, 1976, pp. 300-308 | DOI

[ES97] Einsiedler, Manfred; Schmidt, Klaus Markov partitions and homoclinic points of algebraic Z d -actions, Tr. Mat. Inst. Steklova, Volume 216 (1997), pp. 265-284

[FGL18] Fuhrmann, Gabriel; Gröger, Maik; Lenz, Daniel The structure of mean equicontinuous group actions (2018) (http://arxiv.org/abs/1812.10219)

[Fie01] Fiebig, Doris Factor maps, entropy and fiber cardinality for Markov shifts, Rocky Mt. J. Math., Volume 31 (2001) no. 3, pp. 955-986 | DOI | MR | Zbl

[Fog02] Fogg, N. Pytheas Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794, Springer, 2002 (Collective author. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | DOI | MR | Zbl

[GS87] Grünbaum, Branko; Shephard, Geoffrey C. Tilings and patterns, W. H. Freeman and Company, New York, 1987 | Zbl

[HKW18] Haynes, Alan K.; Koivusalo, Henna; Walton, James A characterization of linearly repetitive cut and project sets, Nonlinearity, Volume 31 (2018) no. 2, pp. 515-539 | DOI | MR | Zbl

[HM10] Hochman, Michael; Meyerovitch, Tom A characterization of the entropies of multidimensional shifts of finite type, Ann. Math., Volume 171 (2010) no. 3, pp. 2011-2038 | DOI | MR | Zbl

[JR15] Jeandel, Emmanuel; Rao, Michael An aperiodic set of 11 Wang tiles (2015) (http://arxiv.org/abs/1506.06492)

[Kar96] Kari, Jarkko A small aperiodic set of Wang tiles, Discrete Math., Volume 160 (1996) no. 1-3, pp. 259-264 | DOI | MR | Zbl

[Kea75] Keane, Michael S. Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31 | DOI | MR | Zbl

[Ken99] Kenyon, Richard Sur la Combinatoire, la Dynamique et la Statistique des Pavages, 1999 (Habilitation à diriger des recherches)

[Knu68] Knuth, Donald E. The art of computer programming. Vol. 1: Fundamental algorithms, Series in Computer Science and Information Processing, Addison-Wesley Co., 1968 | Zbl

[Kur03] Kurka, Petr Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], 11, Société Mathématique de France, 2003 | MR | Zbl

[KV98] Kenyon, Richard W.; Vershik, Anatoly Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dyn. Syst., Volume 18 (1998) no. 2, pp. 357-372 | DOI | MR | Zbl

[Lab19a] Labbé, Sébastien A self-similar aperiodic set of 19 Wang tiles, Geom. Dedicata, Volume 201 (2019), pp. 81-109 | DOI | MR | Zbl

[Lab19b] Labbé, Sébastien Substitutive structure of Jeandel–Rao aperiodic tilings, Discrete Comput. Geom. (2019) | DOI

[Lab20] Labbé, Sébastien Rauzy induction of polygon partitions and toral 2 -rotations (2020) (https://arxiv.org/abs/1906.01104v2)

[LM95] Lind, Douglas; Marcus, Brian An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995 | DOI | Zbl

[LM13] Lee, Jeong-Yup; Moody, Robert V. Taylor–Socolar hexagonal tilings as model sets, Symmetry, Volume 5 (2013) no. 1, pp. 1-46 | DOI | MR | Zbl

[Lot02] Lothaire, M. Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002 (Collective author) | MR | Zbl

[LP03] Lagarias, Jeffrey C.; Pleasants, Peter A. B. Repetitive Delone sets and quasicrystals, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 3, pp. 831-867 | DOI | MR | Zbl

[MH38] Morse, Marston; Hedlund, Gustav A. Symbolic Dynamics, Am. J. Math., Volume 60 (1938) no. 4, pp. 815-866 | DOI | MR | Zbl

[MH40] Morse, Marston; Hedlund, Gustav A. Symbolic dynamics II. Sturmian trajectories, Am. J. Math., Volume 62 (1940), pp. 1-42 | DOI | MR | Zbl

[Pra99] Praggastis, Brenda Numeration systems and Markov partitions from self-similar tilings, Trans. Am. Math. Soc., Volume 351 (1999) no. 8, pp. 3315-3349 | DOI | MR | Zbl

[Que10] Queffélec, Martine Substitution dynamical systems–spectral analysis, Lecture Notes in Mathematics, 1294, Springer, 2010 | DOI | MR | Zbl

[Rau82] Rauzy, Gérard Nombres algébriques et substitutions, Bull. Soc. Math. Fr., Volume 110 (1982) no. 2, pp. 147-178 | DOI | Numdam | Zbl

[Rob71] Robinson, Raphael M. Undecidability and nonperiodicity for tilings of the plane, Invent. Math., Volume 12 (1971), pp. 177-209 | DOI | MR | Zbl

[Rob96] Robinson, E. Arthur Jr. The dynamical properties of Penrose tilings, Trans. Am. Math. Soc., Volume 348 (1996) no. 11, pp. 4447-4464 | DOI | MR | Zbl

[Rob04] Robinson, E. Arthur Jr. Symbolic dynamics and tilings of d , Symbolic dynamics and its applications (Proceedings of Symposia in Applied Mathematics), Volume 60, American Mathematical Society, 2004, pp. 81-119 | DOI | MR

[Rob07] Robinson, E. Arthur Jr. A Halmos–Von Neumann theorem for model sets, and almost automorphic dynamical systems, Dynamics, Ergodic Theory, and Geometry (Mathematical Sciences Research Institute Publications), Volume 54, Cambridge University Press, 2007, pp. 243-272 | DOI | MR | Zbl

[Ros87] Rosenthal, A. Strictly ergodic models and topological mixing for Z 2 -action, Isr. J. Math., Volume 60 (1987) no. 1, pp. 31-38 | DOI | MR | Zbl

[SBGC84] Shechtman, Dan; Blech, I.; Gratias, Denis; Cahn, John W. Metallic Phase with Long–Range Orientational Order and No Translational Symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953 | DOI

[Sch01] Schmidt, Klaus Multi-dimensional symbolic dynamical systems, Codes, Systems, and Graphical Models (Minneapolis, MN, 1999) (The IMA Volumes in Mathematics and its Applications), Volume 123, Springer, 2001, pp. 67-82 | DOI | MR | Zbl

[Sch14] Schwartz, Richard Evan The Octogonal PETs, Mathematical Surveys and Monographs, 197, American Mathematical Society, 2014 | DOI | MR | Zbl

[Sie17] Siefken, Jason A minimal subsystem of the Kari–Culik tilings, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 5, pp. 1607-1634 | DOI | MR | Zbl

[SW03] Sadun, Lorenzo A.; Williams, Robert F. Tiling spaces are Cantor set fiber bundles, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 1, pp. 307-316 | DOI | MR | Zbl

[Thu19] Thuswaldner, Jörg M. S-adic sequences. A bridge between dynamics, arithmetic, and geometry (2019) (http://arxiv.org/abs/1908.05954) | Zbl

[Wal82] Walters, Peter An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer, 1982 | MR | Zbl

[Wan61] Wang, Hao Proving Theorems by Pattern Recognition – II, Bell Syst. Tech. J., Volume 40 (1961) no. 1, pp. 1-41 | DOI

Cité par Sources :