Motivated by the problem of designing inference-friendly Bayesian nonparametric models in probabilistic programming languages, we introduce a general class of partially exchangeable random arrays which generalizes the notion of hierarchical exchangeability introduced in Austin and Panchenko (2014). We say that our partially exchangeable arrays are DAG-exchangeable since their partially exchangeable structure is governed by a collection of Directed Acyclic Graphs. More specifically, such a random array is indexed by for some DAG , and its exchangeability structure is governed by the edge set . We prove a representation theorem for such arrays which generalizes the Aldous-Hoover and Austin–Panchenko representation theorems.
Motivés par le problème de la conception de modèles bayésiens non paramétriques à inférence pour les langages de programmation probabilistes, nous introduisons une classe générale de tableaux aléatoires partiellement échangeables, qui généralise la notion d’échangeabilité hiérarchique introduite par Austin et Panchenko (2014). Nous disons que nos tableaux partiellement échangeables sont DAG-échangeables puisque leur structure partiellement échangeable est gouvernée par une collection de graphes dirigés acycliques (DAG). Plus spécifiquement, un tel tableau aléatoire est indexé par pour un certain DAG , et sa structure d’échangeabilité est gouvernée par l’ensemble d’arêtes . Nous démontrons un théorème de représentation pour de tels tableaux, qui généralise les théorèmes de représentation d’Aldous–Hoover et Austin–Panchenko.
Revised:
Accepted:
Published online:
Mots-clés : Bayesian nonparametrics, exchangeability, hierarchical exchangeability, Aldous–Hoover representation, de Finetti representation
@article{AHL_2021__4__325_0, author = {Jung, Paul and Lee, Jiho and Staton, Sam and Yang, Hongseok}, title = {A generalization of hierarchical exchangeability on trees to directed acyclic graphs}, journal = {Annales Henri Lebesgue}, pages = {325--368}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.74}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.74/} }
TY - JOUR AU - Jung, Paul AU - Lee, Jiho AU - Staton, Sam AU - Yang, Hongseok TI - A generalization of hierarchical exchangeability on trees to directed acyclic graphs JO - Annales Henri Lebesgue PY - 2021 SP - 325 EP - 368 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.74/ DO - 10.5802/ahl.74 LA - en ID - AHL_2021__4__325_0 ER -
%0 Journal Article %A Jung, Paul %A Lee, Jiho %A Staton, Sam %A Yang, Hongseok %T A generalization of hierarchical exchangeability on trees to directed acyclic graphs %J Annales Henri Lebesgue %D 2021 %P 325-368 %V 4 %I ÉNS Rennes %U http://www.numdam.org/articles/10.5802/ahl.74/ %R 10.5802/ahl.74 %G en %F AHL_2021__4__325_0
Jung, Paul; Lee, Jiho; Staton, Sam; Yang, Hongseok. A generalization of hierarchical exchangeability on trees to directed acyclic graphs. Annales Henri Lebesgue, Volume 4 (2021), pp. 325-368. doi : 10.5802/ahl.74. http://www.numdam.org/articles/10.5802/ahl.74/
[AAF + 18] On the computability of graphons (2018) (https://arxiv.org/abs/1801.10387)
[Ack15] Representations of Aut(M)-invariant measures: Part I (2015) (https://arxiv.org/abs/1509.06170)
[AFP16] Invariant measures concentrated on countable structures, Forum Math. Sigma, Volume 4 (2016), 17 | MR | Zbl
[Ald81] Representations for partially exchangeable arrays of random variables, J. Multivariate Anal., Volume 11 (1981) no. 4, pp. 581-598 | DOI | MR | Zbl
[Ald85] Exchangeability and related topics, École d’Été de Probabilités de Saint-Flour XIII 1983 (Lecture Notes in Mathematics), Springer, 1985, pp. 1-198 | Zbl
[Ald10] More uses of exchangeability: representations of complex random structures, Probability and mathematical genetics. Papers in honour of Sir John Kingman (London Mathematical Society Lecture Note Series), Volume 378, Cambridge University Press (2010), pp. 35-63 | DOI | MR | Zbl
[AP14] A hierarchical version of the de Finetti and Aldous–Hoover representations, Probab. Theory Relat. Fields, Volume 159 (2014) no. 3-4, pp. 809-823 | DOI | MR | Zbl
[Aus08] On exchangeable random variables and the statistics of large graphs and hypergraphs, Probab. Surv., Volume 5 (2008), pp. 80-145 | DOI | MR | Zbl
[Aus12] Exchangeable random arrays, 2012 (Notes for IAS workshop,https://www.math.ucla.edu/~tim/ExchnotesforIISc.pdf)
[BR97] Operator Algebras and Quantum Statistical Mechanics. Vol. 2: Equilibrium States Models in Quantum Statistical Mechanics, Texts and Monographs in Physics, Springer, 1997 | Zbl
[CCB16] Edge-exchangeable graphs and sparsity, Advances in Neural Information Processing Systems 29 (NIPS 2016) (2016), pp. 4249-4257
[CD18] Edge exchangeable models for interaction networks, J. Amer. Statist. Assoc., Volume 113 (2018) no. 523, pp. 1311-1326 | DOI | MR | Zbl
[CF17] Sparse graphs using exchangeable random measures, J. R. Stat. Soc. Ser. B. Stat. Methodol., Volume 79 (2017) no. 5, pp. 1295-1366 | DOI | MR | Zbl
[CGZ15] Rate-optimal graphon estimation, Ann. Stat., Volume 43 (2015) no. 6, pp. 2625-2652 | MR | Zbl
[CT17] Relative exchangeability with equivalence relations, Arch. Math. Logic, Volume 57 (2017) no. 5-6, pp. 1-24 | MR | Zbl
[CT18] Relatively exchangeable structures, J. Symb. Log., Volume 83 (2018) no. 2, pp. 416-442 | DOI | MR | Zbl
[DJ08] Graph limits and exchangeable random graphs, Rend. Mat. Appl., Volume 28 (2008) no. 1, pp. 33-61 | MR | Zbl
[Fin75] Theory of probability. A critical introductory treatment. Vols 1 and 2, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1974-1975 (English translation by Antonio Machi and Adrian Smith) | Zbl
[FR12] Computable de Finetti measures, Ann. Pure Appl. Logic, Volume 163 (2012) no. 5, pp. 530-546 | DOI | MR | Zbl
[GMR + 08] Church: a language for generative models, Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (2008) (McAllester, David; Myllymaki, Petri, eds.), AUAI Press (2008)
[GvdV17] Fundamentals of nonparametric Bayesian inference, Cambridge Series in Statistical and Probabilistic Mathematics, 44, Cambridge University Press, 2017 | MR | Zbl
[Hoo79] Relations on probability spaces and arrays of random variables, Volume 2, 1979 (Preprint)
[Kal02] Foundations of modern probability, Probability and Its Applications, Springer, 2002 | DOI | Zbl
[Kal05] Probabilistic Symmetries and Invariance Principles, Probability and Its Applications, Springer, 2005 | Zbl
[KTG + 06] Learning Systems of Concepts with an Infinite Relational Model, Proceedings of the Twenty-First National Conference on Artificial In-telligence (AAAI-06), AAAI Press (2006), pp. 381-388
[MMYW16] Design and Implementation of Probabilistic Programming Language Anglican, IFL 2016: Proceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages (Schrijvers, Tom, ed.), Association for Computing Machinery (2016), 6, pp. 1-12
[MP01] The Bethe lattice spin glass revisited, Eur. Phys. J. B Condens. Matter Phys., Volume 20 (2001) no. 2, pp. 217-233 | MR
[OR15] Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures, IEEE Trans. Pattern Anal. Mach. Intell., Volume 37 (2015) no. 2, pp. 437-461 | DOI
[Pan15] Hierarchical exchangeability of pure states in mean field spin glass models, Probab. Theory Relat. Fields, Volume 161 (2015) no. 3-4, pp. 619-650 | DOI | MR | Zbl
[Res14] A probability path, Modern Birkhäuser Classics, Springer, 2014 | Zbl
[SSY + 18] The Beta–Bernoulli Process and Algebraic Effects, 45th International Colloquium on Automata, Languages, and Programming: ICALP 2018 (Chatzigiannakis, Ioannis; Kaklamanis, Christos; Dániel, Marx; Sanella, Donald, eds.) (Leibniz International Proceedings in Informatics), Volume 107, Schloss Dagstuhl (2018) | MR
[SYA + 17] Exchangeable random process and data abstraction, 2017 Workshop on Probabilistic Programming Semantics (PPS 2017), available at https://pps2017.luddy.indiana.edu/2017/01/02/exchangeable-random-processes-and-data-abstraction/
[VR15] The Class of Random Graphs Arising from Exchangeable Random Measures (2015) (https://arxiv.org/abs/1512.03099)
[WMM14] A New Approach to Probabilistic Programming Inference, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (Kaski, Samuel; Corander, Jukka, eds.) (Proceedings of Machine Learning Research), Volume 33, PMLR (2014), pp. 1024-1032
[XTYK06] Infinite hidden relational models, Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (2006) (Dechter, Rina; Richardson, Thomas S., eds.), AUAI Press (2006), pp. 544-551
Cited by Sources: