We propose a general strategy to derive Lieb–Thirring inequalities for scale-covariant quantum many-body systems. As an application, we obtain a generalization of the Lieb–Thirring inequality to wave functions vanishing on the diagonal set of the configuration space, without any statistical assumption on the particles.
Nous proposons une stratégie générale pour démontrer les inégalités de Lieb–Thirring pour des systèmes quantiques à beaucoup de particules, invariant par changement d’échelle. Comme application, nous obtenons une généralisation de l’inégalité de Lieb–Thirring pour les fonctions d’ondes qui s’annulent sur la diagonale de l’espace des configurations, sans aucune hypothèse statistique sur les particules.
Accepted:
Published online:
Mots-clés : Lieb–Thirring inequalities, uncertainty principle, exclusion principle, Poincaré inequality
@article{AHL_2021__4__251_0, author = {Larson, Simon and Lundholm, Douglas and Nam, Phan Th\`anh}, title = {Lieb{\textendash}Thirring inequalities for wave functions vanishing on the diagonal set}, journal = {Annales Henri Lebesgue}, pages = {251--282}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.72}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.72/} }
TY - JOUR AU - Larson, Simon AU - Lundholm, Douglas AU - Nam, Phan Thành TI - Lieb–Thirring inequalities for wave functions vanishing on the diagonal set JO - Annales Henri Lebesgue PY - 2021 SP - 251 EP - 282 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.72/ DO - 10.5802/ahl.72 LA - en ID - AHL_2021__4__251_0 ER -
%0 Journal Article %A Larson, Simon %A Lundholm, Douglas %A Nam, Phan Thành %T Lieb–Thirring inequalities for wave functions vanishing on the diagonal set %J Annales Henri Lebesgue %D 2021 %P 251-282 %V 4 %I ÉNS Rennes %U http://www.numdam.org/articles/10.5802/ahl.72/ %R 10.5802/ahl.72 %G en %F AHL_2021__4__251_0
Larson, Simon; Lundholm, Douglas; Nam, Phan Thành. Lieb–Thirring inequalities for wave functions vanishing on the diagonal set. Annales Henri Lebesgue, Volume 4 (2021), pp. 251-282. doi : 10.5802/ahl.72. http://www.numdam.org/articles/10.5802/ahl.72/
[Car61] A polynomial in each variable separately is a polynomial, Am. Math. Mon., Volume 68 (1961), pp. 42-44 | DOI | MR | Zbl
[Dau83] An uncertainty principle for fermions with generalized kinetic energy, Commun. Math. Phys., Volume 90 (1983) no. 4, pp. 511-520 | DOI | MR | Zbl
[DL67] Stability of matter. I, J. Math. Phys., Volume 8 (1967) no. 3, pp. 423-434 | DOI | MR | Zbl
[DNPV12] Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl
[Dys67] Ground-state energy of a finite system of charged particles, J. Math. Phys., Volume 8 (1967) no. 8, pp. 1538-1545 | DOI | MR
[FHJN18] The Lieb–Thirring inequality revisited (2018) (https://arxiv.org/abs/1808.09017, to appear in Journal of the European Mathematical Society)
[FS12] Lieb–Thirring inequality for a model of particles with point interactions, J. Math. Phys., Volume 53 (2012) no. 9, 095201, 11 pages | DOI | MR | Zbl
[Gir60] Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., Volume 1 (1960), pp. 516-523 | DOI | MR | Zbl
[HSV13] On fractional Poincaré inequalities, J. Anal. Math., Volume 120 (2013), pp. 85-104 | DOI | Zbl
[Lap12] Spectral inequalities for Partial Differential Equations and their applications, Fifth International Congress of Chinese Mathematicians. Part 1, 2 (Studies in Advanced Mathematics), Volume 51, American Mathematical Society (2012), pp. 629-643 | MR | Zbl
[LL01] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001 | Zbl
[LL18] Exclusion bounds for extended anyons, Arch. Ration. Mech. Anal., Volume 227 (2018) no. 1, pp. 309-365 | DOI | MR | Zbl
[LNP16] Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 3, pp. 1343-1382 | DOI | MR | Zbl
[LPS15] Lieb–Thirring bounds for interacting Bose gases, Commun. Math. Phys., Volume 335 (2015) no. 2, pp. 1019-1056 | DOI | MR | Zbl
[LS09] The Stability of Matter in Quantum Mechanics, Cambridge University Press, 2009 | Zbl
[LS13a] Hardy and Lieb–Thirring inequalities for anyons, Commun. Math. Phys., Volume 322 (2013) no. 3, pp. 883-908 | DOI | MR | Zbl
[LS13b] Local exclusion principle for identical particles obeying intermediate and fractional statistics, Phys. Rev. A, Volume 88 (2013) no. 6, 062106, 9 pages | DOI
[LS14] Local exclusion and Lieb–Thirring inequalities for intermediate and fractional statistics, Ann. Henri Poincaré, Volume 15 (2014) no. 6, pp. 1061-1107 | DOI | MR | Zbl
[LS18] Fermionic behavior of ideal anyons, Lett. Math. Phys., Volume 108 (2018) no. 11, pp. 2523-2541 | DOI | MR | Zbl
[LT75] Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett., Volume 35 (1975) no. 11, pp. 687-689 | DOI
[LT76] Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics: Essaus in Honor (Lieb, Elliott H., ed.) (Princeton Series in Physics), Princeton University Press, 1976, pp. 269-303 | Zbl
[Lun18] Methods of modern mathematical physics: Uncertainty and exclusion principles in quantum mechanics (2018) (https://arxiv.org/abs/1805.03063)
[LY01] The ground state energy of a dilute two-dimensional Bose gas, J. Stat. Phys., Volume 103 (2001) no. 3-4, pp. 509-526 | DOI | MR | Zbl
[Nam18] Lieb–Thirring inequality with semiclassical constant and gradient error term, J. Funct. Anal., Volume 274 (2018) no. 6, pp. 1739-1746 | MR | Zbl
[Rum11] Balanced distribution-energy inequalities and related entropy bounds, Duke Math. J., Volume 160 (2011) no. 3, pp. 567-597 | DOI | MR | Zbl
[Sve81] The effect of submanifolds upon essential self-adjointness and deficiency indices, J. Math. Anal. Appl., Volume 80 (1981) no. 2, pp. 551-565 | DOI | Zbl
[Yaf99] Sharp Constants in the Hardy–Rellich Inequalities, J. Funct. Anal., Volume 168 (1999) no. 1, pp. 121-144 | DOI | MR | Zbl
Cited by Sources: