Typical weighted random simplices , , in a Poisson–Delaunay tessellation in are considered, where the weight is given by the st power of the volume. As special cases this includes the typical () and the usual volume-weighted () Poisson–Delaunay simplex. By proving sharp bounds on cumulants it is shown that the logarithmic volume of satisfies a central limit theorem in high dimensions, that is, as . In addition, rates of convergence are provided. In parallel, concentration inequalities as well as moderate deviations are studied. The set-up allows the weight to depend on the dimension as well. A number of special cases are discussed separately. For fixed also mod- convergence and the large deviations behaviour of the logarithmic volume of are investigated.
Nous considérons des simplexes aléatoires pondérés typiques , , dans une tessellation de Poisson–Delaunay dans , où le poids est donné par la puissance du volume. Ceci inclut en particulier les simplexes de Poisson–Delaunay dans les cas typiques () et pondérés par le volume (). En prouvant des bornes précises sur les cumulants, nous montrons que le volume logarithmique de satisfait un théorème central limite en grande dimension, i.e., lorsque . De plus, nous établissons des vitesses de convergence. Parallèlement, nous étudions les inégalités de concentration et les déviations modérées. Ce cadre permet au poids de dépendre également de la dimension. Nous discutons séparément un certain nombre de cas particuliers. Lorsque est fixé, nous étudions également la convergence mod- et les grandes déviations du volume logarithmique de .
Revised:
Accepted:
Published online:
Mots-clés : Berry–Esseen bound, central limit theorem, cumulants, high dimensions, mod-$\phi $ convergence, moderate deviations, large deviations, random simplex, Poisson–Delaunay tessellation, stochastic geometry
@article{AHL_2021__4__121_0, author = {Gusakova, Anna and Th\"ale, Christoph}, title = {The volume of simplices in high-dimensional {Poisson{\textendash}Delaunay} tessellations}, journal = {Annales Henri Lebesgue}, pages = {121--153}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.68}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.68/} }
TY - JOUR AU - Gusakova, Anna AU - Thäle, Christoph TI - The volume of simplices in high-dimensional Poisson–Delaunay tessellations JO - Annales Henri Lebesgue PY - 2021 SP - 121 EP - 153 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.68/ DO - 10.5802/ahl.68 LA - en ID - AHL_2021__4__121_0 ER -
Gusakova, Anna; Thäle, Christoph. The volume of simplices in high-dimensional Poisson–Delaunay tessellations. Annales Henri Lebesgue, Volume 4 (2021), pp. 121-153. doi : 10.5802/ahl.68. http://www.numdam.org/articles/10.5802/ahl.68/
[AGBG + 19] Asymptotic normality for random simplices and convex bodies in high dimensions (2019) (https://arxiv.org/abs/1906.02471, to appear in Proceedings of the American Mathematical Society)
[AGPT18] Large deviations for high-dimensional random projections of -balls, Adv. Appl. Math., Volume 99 (2018), pp. 1-35 | DOI | MR | Zbl
[AGPT19] Gaussian fluctuations for high-dimensional random projections of -balls, Bernoulli, Volume 25 (2019) no. 4A, pp. 3139-3174 | DOI | MR | Zbl
[AS64] Handbook of mathematical functions with formula, graphs and mathematical tables, Dover Publications, 1964 | Zbl
[BYY19] Limit theory for geometric statistics of point processes having fast decay of correlations, Ann. Probab., Volume 47 (2019) no. 2, pp. 835-895 | DOI | MR | Zbl
[DE13a] Moderate deviations for the determinant of Wigner matrices, Limit Theorems in Probability, Statistics and Number Theory (Springer Proceedings in Mathematics & Statistics), Volume 42, Springer, 2013, pp. 253-275 | DOI | MR | Zbl
[DE13b] Moderate deviations via cumulants, J. Theor. Probab., Volume 26 (2013) no. 2, pp. 360-385 | DOI | MR | Zbl
[DKN15] Mod- convergence, Int. Math. Res. Not., Volume 11 (2015), pp. 3445-3485 | Zbl
[DT19] Determinants of block Hankel matrices for random matrix-valued measures, Stochastic Processes Appl., Volume 129 (2019) no. 12, pp. 5200-5235 | DOI | MR | Zbl
[DZ10] Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer, 2010 corrected reprint of the second (1998) edition | MR | Zbl
[EK20] Fine asymptotics for models with Gamma type moments (2020) (https://arxiv.org/abs/1710.06484, to appear in Random Matrices: Theory and Applications)
[ENR17] Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions, Adv. Appl. Probab., Volume 49 (2017) no. 3, pp. 745-767 | DOI | MR | Zbl
[ERS15] Moderate deviations for stabilizing functionals in geometric probability, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 51 (2015) no. 1, pp. 89-128 | DOI | Numdam | MR | Zbl
[FMN16] Mod- convergence. Normality zones and precise deviations. Normality zones and precise deviations, SpringerBriefs in Probability and Mathematical Statistics, Springer, 2016 | Zbl
[Fér18] Weighted dependency graphs, Electron. J. Probab., Volume 23 (2018), 93 | MR | Zbl
[GGZ19] Random affine simplexes, J. Appl. Probab., Volume 56 (2019) no. 1, pp. 39-51 | DOI | MR | Zbl
[GKR17] Large deviations for random projections of balls, Ann. Probab., Volume 45 (2017) no. 6B, pp. 4419-4476 | DOI | MR | Zbl
[GKT19] Limit theorems for random simplices in high dimensions, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 16 (2019) no. 1, pp. 141-177 | DOI | MR | Zbl
[GT18a] Concentration and moderate deviations for Poisson polytopes and polyhedra, Bernoulli, Volume 24 (2018) no. 4A, pp. 2811-2841 | DOI | MR | Zbl
[GT18b] Gaussian polytopes: a cumulant-based approach, J. Complexity, Volume 47 (2018), pp. 1-41 | DOI | MR | Zbl
[Hei05] Large deviations of the empirical volume fraction for stationary Poisson grain models, Ann. Appl. Probab., Volume 15 (2005) no. 1A, pp. 392-420 | DOI | MR | Zbl
[Hof17] A central limit theorem for vincular permutation patterns, Discrete Math. Theor. Comput. Sci., Volume 19 (2017) no. 2, 9 | MR | Zbl
[HS09] Berry–Esseen bounds and Cramér-type large deviations for the volume distribution of Poisson cylinder processes, Lith. Math. J., Volume 49 (2009) no. 4, pp. 381-398 | DOI | Zbl
[JKN11] Mod-Gaussian convergence: new limit theorems in probability and number theory, Forum Math., Volume 23 (2011) no. 4, pp. 3549-3587 | MR | Zbl
[Kla07] A central limit theorem for convex sets, Invent. Math., Volume 168 (2007) no. 1, pp. 91-131 | DOI | MR
[KPT19a] High-dimensional limit theorems for random vectors in -balls, Commun. Contemp. Math., Volume 21 (2019) no. 1, 1750092 | MR | Zbl
[KPT19b] High-dimensional limit theorems for random vectors in -balls. II (2019) (https://arxiv.org/abs/1906.03599 to appear in Communications in Contemporary Mathematics) | Zbl
[KTT19] Expected intrinsic volumes and facet numbers of random beta-polytopes, Math. Nachr., Volume 292 (2019) no. 1, pp. 79-105 | DOI | MR | Zbl
[Mat82] On a conjecture in geometric probability regarding asymptotic normality of a random simplex, Ann. Probab., Volume 10 (1982) no. 1, pp. 247-251 | DOI | MR | Zbl
[Mil71] Isotropic random simplices, Adv. Appl. Probab., Volume 3 (1971), pp. 353-382 | DOI | MR | Zbl
[Mor10] Very accurate estimates of the polygamma functions, Asymptotic Anal., Volume 68 (2010) no. 3, pp. 125-134 | DOI | MR | Zbl
[OLBC10] NIST Handbook of Mathematical Functions, Cambridge University Press, 2010 | Zbl
[PPZ14] A central limit theorem for projections of the cube, Probab. Theory Relat. Fields, Volume 159 (2014) no. 3-4, pp. 701-719 | DOI | MR | Zbl
[PWZ17] Limit theorems for linear spectrum statistics of orthogonal polynomial ensembles and their applications in random matrix theory, J. Math. Phys., Volume 58 (2017) no. 10, 103301 | MR | Zbl
[QV05] Some properties of the gamma and psi functions, with applications, Math. Comput., Volume 74 (2005) no. 250, pp. 723-742 | MR
[Rub77] The volume of a random simplex in an -ball is asymptotically normal, J. Appl. Probab., Volume 14 (1977) no. 3, pp. 647-653 | DOI | MR | Zbl
[SS91] Limit Theorems for Large Deviations, Mathematics and its Applications (Soviet Series), 73, Kluwer Academic Publishers, 1991 (translated and revised from the 1989 Russian original) | MR
[ST16] Cumulants on Wiener chaos: moderate deviations and the fourth moment theorem, J. Funct. Anal., Volume 270 (2016) no. 6, pp. 2223-2248 | DOI | MR | Zbl
[SW08] Stochastic and Integral Geometry, Probability and its Applications, Springer, 2008 | DOI | Zbl
[WW15] A Course of Modern Analysis, Cambridge University Press, 1915 | Zbl
Cited by Sources: