We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank . More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective products of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances, which also leads to a new description of Patterson–Sullivan distributions.
On établit un résultat d’équidistribution pour les états résonants de Ruelle sur les espaces localement symétriques compacts de rang . Plus précisemment, on montre que, parmi les résonances de Ruelle dans la première bande, il y a une sous-suite de densité pour laquelle le produit des états résonants et co-résonants associés converge faiblement vers la mesure de Liouville. On démontre ce résultat via l’obtention d’une correspondance exacte entre les espaces propres du Laplacien et les états résonants de Ruelle de la première bande, ce qui par ailleurs donne une nouvelle description des distributions de Patterson–Sullivan.
Revised:
Accepted:
Published online:
Mots-clés : Ruelle resonances, quantum ergodicity, semi-classical measures
@article{AHL_2021__4__81_0, author = {Guillarmou, Colin and Hilgert, Joachim and Weich, Tobias}, title = {High frequency limits for invariant {Ruelle} densities}, journal = {Annales Henri Lebesgue}, pages = {81--119}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.67}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.67/} }
TY - JOUR AU - Guillarmou, Colin AU - Hilgert, Joachim AU - Weich, Tobias TI - High frequency limits for invariant Ruelle densities JO - Annales Henri Lebesgue PY - 2021 SP - 81 EP - 119 VL - 4 PB - ÉNS Rennes UR - http://www.numdam.org/articles/10.5802/ahl.67/ DO - 10.5802/ahl.67 LA - en ID - AHL_2021__4__81_0 ER -
Guillarmou, Colin; Hilgert, Joachim; Weich, Tobias. High frequency limits for invariant Ruelle densities. Annales Henri Lebesgue, Volume 4 (2021), pp. 81-119. doi : 10.5802/ahl.67. http://www.numdam.org/articles/10.5802/ahl.67/
[AZ07] Patterson–Sullivan distributions and quantum ergodicity, Ann. Henri Poincaré, Volume 8 (2007) no. 2, pp. 361-426 | DOI | MR | Zbl
[BL07] Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 301-322 | DOI | MR | Zbl
[BS87] Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math., Volume 380 (1987), pp. 108-165 | MR | Zbl
[CdV85] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | DOI | Numdam | Zbl
[Cos05] A note on Hölder regularity of invariant distributions for horocycle flows, Nonlinearity, Volume 18 (2005) no. 6, pp. 2715-2726 | DOI | MR | Zbl
[DDZ14] Sharp polynomial bounds on the number of Pollicott–Ruelle resonances, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1168-1183 | DOI | MR | Zbl
[DFG15] Power spectrum of the geodesic flow on hyperbolic manifolds, Anal. PDE, Volume 8 (2015) no. 4, pp. 923-1000 | DOI | MR | Zbl
[DG16] Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré, Volume 17 (2016) no. 11, pp. 3089-3146 | DOI | MR | Zbl
[DZ16] Fonctions zêta dynamiques pour les flots d’Anosov en utilisant l’analyse microlocale, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 3, pp. 543-577 | Zbl
[DZ19] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019 | MR | Zbl
[FF03] Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003) no. 3, pp. 465-526 | MR | Zbl
[FS11] Upper bound on the density of Ruelle resonances for Anosov flows, Commun. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364 | DOI | MR | Zbl
[FT13] Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 9-10, pp. 385-391 | DOI | MR | Zbl
[FT17a] Fractal Weyl law for the Ruelle spectrum of Anosov flows (2017) (https://arxiv.org/abs/1706.09307)
[FT17b] The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., Volume 208 (2017) no. 3, pp. 851-998 | DOI | MR | Zbl
[GBW17] Ruelle–Pollicott Resonances for Manifolds with Hyperbolic Cusps (2017) (https://arxiv.org/abs/1712.07832)
[GHW18] Classical and quantum resonances for hyperbolic surfaces, Math. Ann., Volume 370 (2018) no. 3, pp. 3-4 | MR | Zbl
[GO05] Bounded eigenfunctions in the real hyperbolic space, Int. Math. Res. Not., Volume 62 (2005), pp. 3867-3897 | DOI | MR | Zbl
[Had20] Ruelle and quantum resonances for open hyperbolic manifolds, Int. Math. Res. Not., Volume 2020 (2020) no. 5, pp. 1445-1480 | DOI | MR | Zbl
[Hel74] Eigenspaces of the Laplacian; integral representations and irreducibility, J. Funct. Anal., Volume 17 (1974) no. 3, pp. 328-353 | DOI | MR | Zbl
[Hel78] Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press Inc., 1978 | MR | Zbl
[Hel84] Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press Inc., 1984 | Zbl
[HHS12] Patterson–Sullivan distributions in higher rank, Math. Z., Volume 272 (2012) no. 1-2, pp. 607-643 | DOI | MR | Zbl
[Hil05] An ergodic Arnold–Liouville theorem for locally symmetric spaces, Twenty Years of Bialowieza: A Mathematical Anthology. Aspects of differential geometric methods in physics (World Scientific Monograph Series in Mathematics), Volume 8, World Scientific, 2005, pp. 163-184 | DOI | MR | Zbl
[HS09] Patterson–Sullivan distributions for rank one symmetric spaces of the noncompact type (2009) (https://arxiv.org/abs/0909.2142)
[Hör90] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1990 | Zbl
[KW19] Quantum-classical correspondence on associated vector bundles over locally symmetric spaces, Int. Math. Res. Not. (2019), rnz068 | DOI
[KW20] Pollicott–Ruelle resonant states and Betti numbers, Commun. Math. Phys., Volume 378 (2020) no. 2, pp. 917-941 | DOI | MR | Zbl
[Liv04] On contact Anosov flows, Ann. Math., Volume 159 (2004) no. 3, pp. 1275-1312 | DOI | MR | Zbl
[OS80] Eigenspace of invariant differential operators on an affine symmetric space, Invent. Math., Volume 57 (1980) no. 1, pp. 1-81 | DOI | MR | Zbl
[Ota98] Sur les fonctions propres du laplacien du disque hyperbolique, C. R. Math. Acad. Sci. Paris, Volume 327 (1998) no. 2, pp. 161-166 | DOI | MR | Zbl
[Shn74] Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR | Zbl
[Wei17] On the support of Pollicott–Ruelle resonanant states for Anosov flows, Ann. Henri Poincaré, Volume 18 (2017) no. 1, pp. 37-52 | DOI | MR | Zbl
[Zel87] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | MR | Zbl
[Zwo12] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl
Cited by Sources: